首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
用失重、线性电位扫描、交流阻抗、恒流放电等多种方法研究了AZ镁合金在1.0 mol/L Mg(ClO4)2溶液中的电化学行为,考察了它们作为镁电池负极材料的性能。浸泡与伏安实验结果表明,AZ21的自腐蚀比AZ31和AZ61严重;AZ21和AZ31的电化学活性优于AZ61,表现为阳极极化小,开路电位负。交流阻抗结果表明AZ21、AZ31、AZ61的Rct值逐渐增加。恒电流放电发现,AZ31的放电电位负且稳定;电流效率为82%,高于AZ21和AZ61;滞后时间2 s,小于AZ21和AZ61。可望用于Mg电池。  相似文献   

2.
针对镁合金作为镁电池负极材料存在着自腐蚀速率大、负极利用率低、电压滞后等问题,采用恒温浸泡、极化曲线、恒电流放电等手段对AZ31(挤压态)镁合金和纯镁(铸态)进行了试验研究和分析。研究了AZ31和纯镁在浓度为1.0 mol/L,1.5 mol/L,2.0 mol/L的MgSO4,Mg(ClO42,MgCl2和Mg(NO32溶液中的腐蚀行为和电化学性能,具体分析了AZ31在不同电解液中的电化学行为。结果表明,AZ31在MgCl2溶液中的自腐蚀速率较高且生成较厚的腐蚀产物膜,严重降低了电极的利用率,在MgSO4溶液中则常常发生点蚀,不适宜用作镁电池负极材料,而在Mg(ClO42和Mg(NO32溶液中具有相对较好的耐蚀性能和放电效率。  相似文献   

3.
采用极化曲线、电化学阻抗、恒电流放电、析氢失重等方法,研究了AZ31镁合金在空白1.5 mol/L Mg(ClO4)2溶液以及添加了La(CH3COO)3和NaF的电解液中的电化学行为。结果表明,添加剂NaF使得AZ31在1.5 mol/L Mg(ClO4)2溶液中开路电位和活化电位负移,极化曲线中腐蚀电流降低以及浸泡实验中析氢率和失重率降低,放电效率提高,更为重要的是缩短了放电滞后时间;另一方面添加剂La(CH3COO)3提高了放电效率,但对于放电滞后没有改善,对于耐蚀性也没有提高。  相似文献   

4.
通过对比分析太阳能用压铸AZ91D合金在3.5%的NaCl溶液,0.5mol/L的Na2SO4溶液和0.5mol/L的MgSO4溶液中的腐蚀行为,系统研究了SO42-离子对AZ91D合金腐蚀行为的影响。结果表明,Mg(OH)2和Mg6Al2(OH)18·5H2O相是合金在溶液中的腐蚀产物。AZ91D合金在3种溶液中的腐蚀速率从大至小依次为:NaClMgSO4Na2SO4;AZ91D合金在NaCl溶液中发生了点蚀,而在Na2SO4溶液和MgSO4溶液中以均匀腐蚀为主。  相似文献   

5.
采用恒温浸泡、交流阻抗和极化曲线法分别研究铸态(F)和固溶态(T4)的NZ30K以及挤压态AZ31镁合金在不同浓度MgCl2、MgSO4、Mg(COOCH3)2、MgBr2溶液中的腐蚀行为和电化学性能.结果表明随着电解液中电解质浓度的增加,3种镁合金的自腐蚀速率均增大.F态和T4态的NZ30K合金在MgSO4溶液中腐蚀速率最快,在MgBr2溶液中耐蚀性能最好,而AZ31合金在MgCl2溶液中耐蚀性能最差,在MgSO4和Mg(COOCH3)2中具有较好的耐蚀性能.电化学阻抗谱(EIS)结果表明在4种电解液中,镁合金的高频端容抗环半径均随着电解质浓度的增加而减小,这与恒温浸泡的实验结果相吻合.  相似文献   

6.
镁合金可以作为海水激活电池阳极材料来使用。研究了AZ31、AP65和Mg-3%Ga-2%Hg 3种镁合金在海水中放电的电化学性能。Mg-3%Ga-2%Hg合金的阳极极化曲线表明,该合金具有比AZ31和AP65合金更负的腐蚀电位。恒电流放电实验结果表明,Mg-3%Ga-2%Hg合金在海水中表现出更好的阳极放电性能。交流阻抗测试表明,镁合金阳极和海水接触表面的电化学反应决定反应的活性,Mg-3%Ga-2%Hg 合金中的Mg3Hg和Mg21Ga5Hg3化合物比AZ31合金中的Mg17(Al,Zn)12相以及AP65合金中的铅在镁中形成的固溶体具有更好的电化学活性。  相似文献   

7.
为了改善AZ31镁合金在3.5wt%NaCl溶液中的抗腐蚀和活化性能,通过浸泡、电化学阻抗谱、恒电流和动电位极化扫描试验研究了偏钒酸铵及固溶退火处理对AZ31镁合金自腐蚀和电化学性能的影响。结果表明:偏钒酸铵能抑制AZ31镁合金的腐蚀,当0.5%偏钒酸铵加入到3.5wt%NaCl溶液时,合金的缓蚀率高(65.7%),自腐蚀电流小,为0.0033 mA/cm2。在-1.0 V下合金的电流密度高达30.0 mA/cm2,开路电位Eocp和活化电位Eact分别为-1.60 V和-1.35V。AZ31镁合金经350℃固溶4、8、16和24h,与铸态合金相比,其放电电位和耐蚀性有所降低。可是,随固溶时间延长,合金元素固溶度增大,结果导致合金放电性能和耐蚀性能提高。  相似文献   

8.
通过计时电位法和电化学阻抗谱技术研究Mg(NO_3)_2+Mg(ClO_4)_2复合电解液中AZ31B镁合金电极的放电性能和电压滞后,并初步探讨了镁合金电极表面腐蚀膜的结构变化。结果表明:AZ31B合金在Mg(NO_3)_2:Mg(ClO_4)_2溶液体积比为72∶28和74∶26时恒流放电曲线平稳,在2.5和6 m A·cm~(-2)放电时稳定电位均可达到约-1.24 V,电压滞后时间为5~8 s;放电后表面膜的化学基团与放电前相同,放电破坏了镁合金电极表面腐蚀膜,造成连续串珠状点蚀坑,其膜电阻消失,电荷转移电阻减小至375Ω·cm~2。  相似文献   

9.
目的 研究合金化及后续热处理下的镁阳极电化学性能,开发出一种新型镁合金阳极材料。方法 利用熔炼法制备Mg-6%Al-1%Zn-0.5%In(质量分数)并做海水激活电池阳极材料,采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射(XRD)和一系列电化学测试方法研究在3.5%NaCl溶液中In元素的添加和后续固溶处理对Mg-6%Al-1%Zn(AZ61)合金显微组织及其电化学性能的影响。结果 合金元素In的添加及后续热处理可提升镁阳极的放电活性和利用效率。AZ61+0.5%In合金经420 ℃固溶16 h后,在10 mA/cm2和50 mA/cm2下有更负的平均放电电位,分别为?1.545 V(vs. SHE)和?1.229 V(vs. SHE),利用效率在2种电流密度下分别达56.2%与59.3%。结论 向AZ61合金中加入0.5%In,其会与Al存在竞争溶解机制,促进第二相Mg17Al12的生成。不连续分布的第二相和In自身的溶解-再沉积作用破坏了腐蚀产物膜的连续性,大幅提升了AZ61的放电活性。经420 ℃固溶处理16 h后,可在不增大晶粒尺寸的前提下使得第二相Mg17Al12基本溶入基体。此时腐蚀产物膜的稳定性进一步降低,合金成分更均匀,镁阳极的放电活性也得以提升。  相似文献   

10.
六次甲基四胺对AZ31镁合金的缓蚀作用研究   总被引:1,自引:0,他引:1  
为了表征六次甲基四胺(HMTA)对AZ31镁合金在MgSO4溶液中的缓蚀性能,用线性电位扫描、电化学阻抗谱等方法研究了合金在溶液中的电化学行为.结果表明,少量HMTA的加入能使AZ31镁合金的开路电位正移,极化电阻增大,从而发挥缓蚀效果.HMTA的添加量在0.1~0.15mmol/L范围时具有较好的缓蚀性能,并使活化电位负移,确保合金具有较好的电化学活性.  相似文献   

11.
AZ31镁合金在MgSO4溶液中的电化学行为   总被引:2,自引:0,他引:2  
用线性电位扫描、Tafel极化曲线、恒流放电、交流阻抗、失重法等方法研究AZ31镁合金在MgSO4溶液中的电化学行为,考察其作为电池负极材料的性能,并研究十二烷基苯磺酸钠对AZ31镁合金的缓蚀性能。结果表明:负差效应的存在极大降低AZ31镁合金的电流效率;未经放电时,合金自放电电流密度小,但放电后,自放电增强,存储能力降低。十二烷基苯磺酸钠能对AZ31合金起到缓蚀作用,提高放电电流效率,但会使续放电时出现电位滞后的现象。  相似文献   

12.
镁电极材料具有化学活性高、比容量大、资源丰富、可再生等优点,是一种很有潜力的电池负极材料,但是一直没有得到广泛应用,主要是因为镁及其合金在电解液中存在电压滞后、腐蚀严重等问题,使其无法达到应用标准。因此,研究镁合金作为负极材料的电化学行为和讨论电解液和添加剂的影响,对于镁电池的开发利用具有重要的实用价值和理论意义。通过线性电位扫描、Tafel极化曲线、电化学阻抗、恒流放电技术研究了AZ31B镁合金在含硝酸镧的复合电解液中的电化学行为。添加硝酸镧后,AZ31B镁合金在复合电解液中的腐蚀阻力增大,放电活性增高,放电稳定电位负移,电荷传递电阻值随硝酸镧浓度增加呈现先减小后增大的规律。当硝酸镧浓度为0.001 mol/L时,镁合金的腐蚀电位约为-1.33 V,稳定电位达到-1.28 V,镁表面腐蚀膜被放电电流所破坏,形成大量点蚀坑。  相似文献   

13.
通过对动电位极化曲线、电化学阻抗谱图、SEM形貌的分析,研究了AZ31、AZ91和稀土镁合金在8.0%(质量分数)Na Cl溶液中的腐蚀行为。并将上述三种镁合金组装成电池,在8.0%Na Cl溶液中进行恒流放电测试。结果表明:三种负电极的耐蚀性是稀土合金AZ31AZ91;浸泡48 h后稀土镁合金的表面裂纹最少,腐蚀程度最轻,而AZ91负极的腐蚀程度最严重,表面裂纹较深;稀土合金的放电时间最长,达到800 min,AZ31为710 min,AZ91为660 min。  相似文献   

14.
采用电化学噪声技术研究了AZ31镁合金在0.1 mol/L中性NaCl溶液中的腐蚀电化学行为,并通过小波分析研究了该体系在腐蚀过程中的腐蚀特征及机理.结果表明:AZ31镁合金在腐蚀之初,由于电极表面覆盖有在空气中形成的离散氧化膜,导致EDP的高阶(低频)能量占据主导地位;同时由于侵蚀性粒子在原始离散氧化膜的缺陷处的攻击,导致与点蚀密切相关的低阶(高频)能量分量在EDP中也占据重要地位;在镁合金的整个腐蚀过程中重复地发生腐蚀产物膜生长、局部剥离和大面积剥离的现象.因此,EDP谱图的特征相应地发生规律性变化:产物膜比较完整时,低频能量分量占据主导地位;腐蚀产物膜局部剥离时,低频能量分量降低,高频能量分量增大;产物膜大面积剥离时,高频能量分量占据主导地位.  相似文献   

15.
研究了以铸态AZ31镁合金为阳极材料的镁空气电池在加入了0.5 g/L NaPO_3、0.5 g/L十二烷基苯磺酸钠(SDBS)、0.5 g/L NaPO_3+0.5 g/L SDBS作为缓蚀剂的3.5%(质量分数) NaCl电解液中的放电性能,测试了AZ31镁合金在不同缓蚀剂溶液中的自腐蚀速率、动电位极化曲线、EIS谱,并使用SEM观察了阳极材料在不同缓蚀剂溶液中的放电形貌。结果表明,加入缓蚀剂可以较好地抑制析氢腐蚀,提高阳极利用率,弱化阳极极化,提高放电电压。其中在NaPO_3+SDBS缓蚀剂溶液中,镁空气电池阳极腐蚀最弱,缓蚀效率可以达到85%,阳极利用率达到43.2%。  相似文献   

16.
为了提高合金的阳极性能,在Al-0.65Mg-0.05Ga-0.15Sn(质量分数,%)基体合金阳极中加入0.4%和0.8%(质量分数)的氧化锆纳米颗粒,采用电化学动态极化、电化学阻抗谱和恒电流放电等方法对颗粒增强后的合金进行电化学表征,采用在4 mol/L KOH溶液中的自腐蚀速率和析氢率对增强合金的腐蚀行为进行评价,并利用场发射扫描电子显微镜(FESEM)研究合金的表面形貌。结果表明,基体合金在4 mol/L KOH溶液中,释放出0.47m L/(min·cm~2)的氢气,腐蚀速率较高,而含0.8%(质量分数)Zr O_2的合金释放出0.32 m L/(min·cm~2)的氢气,腐蚀速率最低。此外,通过添加氧化锆纳米颗粒,能够降低铝阳极在碱性溶液中的腐蚀电流密度,其耐腐蚀性明显优于基体合金。此外,添加纳米氧化锆的阳极材料具有更高的电流放电效率,在4 mol/L KOH溶液中,添加0.8%(质量分数)纳米氧化锆的合金表现出最高的功率密度和阳极利用率。  相似文献   

17.
采用浸泡腐蚀、失重腐蚀以及电化学腐蚀中的动电位极化曲线、电化学阻抗谱等方法研究静液挤压AZ80镁合金经350℃退火热处理1、2和4 h后,在p H 6.1的0.1 mol/L Na2SO4溶液中的腐蚀行为。结果表明:退火热处理使得挤压后的AZ80镁合金晶粒发生再结晶,改变AZ80镁合金的组织和成分分布,可有效提高镁合金的腐蚀性能;但是热处理时间也会对合金的耐蚀性产生影响,其中经(350℃,1 h)退火热处理后,合金自腐蚀电位为-1.4501 V,腐蚀电流密度为0.02323 m A/cm2,耐腐蚀能力显著提高,表现出较好的综合性能。  相似文献   

18.
通过浸泡法和电化学腐蚀法研究了(Ni8Nb5)99.5Sb0.5非晶在1,6mol/LHCl,1mol/LH2SO4和3%NaCl(质量分数)溶液中的腐蚀行为,对相应的组分金属Ni,Nb和Sb的腐蚀行为进行了比较。钝化膜的稳定性使用恒电位法和XPS深度剖析进行了研究,电化学极化测试后用扫描电镜观察了合金的表面形貌。结果表明,Ni-Nb-Sb合金在1mol/LHCl,1mol/LH2SO4和3%NaCl(质量分数)溶液中具有良好的抗腐蚀性,在6mol/LHCl溶液中,非晶合金的抗腐蚀性较差。在含有氯的介质中,电化学腐蚀后非晶合金表面被晶化,且有过钝化溶解。对钝化膜的稳定性研究表明,在低电压下,钝化膜的生长是由扩散控制的,而在高电压下,则主要呈活化腐蚀。  相似文献   

19.
采用浸泡腐蚀试验、失重腐蚀试验以及电化学方法等研究了静液挤压AZ80镁合金在pH 6.1的0.1mol/L Na2SO4溶液中的腐蚀行为。结果表明,静液挤压使得AZ80镁合金晶粒尺寸变小且变形不均匀,降低了镁合金在含硫介质中的耐蚀性,表现为浸泡试验中更严重的表面腐蚀形貌、失重试验中更大的平均腐蚀速率、极化曲线中更大的腐蚀电流密度以及电化学阻抗谱中更低的极化电阻。这主要是因为静液挤压变形使得AZ80镁合金内部存在大量的位错缠结,这样产生的残余内应力会增大镁合金的电化学活性,降低镁合金的耐蚀性。  相似文献   

20.
为了提高镁空气电池的放电电压,采用浸泡失重法、动电位极化曲线、电化学阻抗谱、扫描电镜和电池放电测试等研究了固溶处理对AZ31镁合金活化性能的影响以及以铸态、固溶处理AZ31镁合金为阳极、3.5wt%的Na Cl溶液为电解液所组成镁空气电池的放电性能。结果表明,经过固溶处理后,铸态AZ31镁合金中β-Mg17Al12相消失,活化性能得到大幅提高,所以组装成的镁空气电池表现出更高的工作电压,当以20 m A·cm~(-2)的电流密度放电时,放电电压为1.0931 V。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号