首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
One‐step synthesis of star copolymers by reversible addition–fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel dual initiator is reported. Triarm block copolymers comprising one polystyrene (or polyacrylamide) arm and two poly(β‐butyrolactone) arms were synthesized in one‐step by simultaneous RAFT polymerization of styrene (St) (or acrylamide, designated as AAm) and ROP of β‐butyrolactone (BL) in the presence of a novel trifunctional initiator, 1,2‐propanediol ethyl xanthogenate (RAFT‐ROP agent). This dual initiator was obtained through the reaction of 3‐chloro‐1,2‐propanediol with the potassium salt of ethyl xanthogenate. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The characterization of the products was achieved using Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H‐NMR), 13C‐nuclear magnetic resonance (13C‐NMR), Gas chromatography–mass spectrometry (GC–MS), gel‐permeation chromatography (GPC), thermogravimetric analysis (TGA), and fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Genhua Zheng 《Polymer》2005,46(8):2802-2810
Star polymers based on styrene/divinyl benzene (St/DVB) and PSt-b-poly(N-isopropyl acrylamide) (NIPAAM)/DVB have been successively prepared by ‘arm-first’ method via reversible addition-fragmentation chain transfer (RAFT) polymerization. The linear macro RAFT agent PSt-SC(S)Ph was prepared by RAFT polymerization of St using benzyl dithiobenzoate and AIBN as RAFT agent and initiator. Successive RAFT polymerization of NIPAAM with PSt-SC(S)Ph as macro RAFT agent to afford diblock copolymer, PSt-b-PNIPAAM-SC(S)Ph. The coupling reactions of PSt-SC(S)Ph or PSt-b-PNIPAAM-SC(S)Ph in the presence of DVB produced the star copolymers, C(PSt)n or C(PSt-b-PNIPAAM)n. The molar ratio of DVB/PSt-SC(S)Ph and polymerization time influenced the yields, molecular weight and distribution of the star-shaped polymers, which was characterized by 1H NMR and IR spectra, GPC measurements as well as DLS.  相似文献   

3.
The kinetics of free‐radical homopolymerization and copolymerization of acrylamide (AAm) and styrene (S) initiated by water‐soluble ammonium peroxodisulfate, (APS) or by toluene‐soluble dibenzoyl peroxide (DBP) in inverse microemulsion toluene/S/AOT (sodium bis(2‐ethylhexyl)sulfosuccinate)/water/AAm characterized by a low volume fraction of the aqueous phase (Φaw ≈ 0.08) as a function of the concentration of S in the oil phase of the inverse microemulsion system have been studied. S strongly decreases the rate of AAm/S (co)polymerization. This is valid for both APS and DBP initiators. Kinetic measurements indicate the important role for cross‐initiation of water soluble AAm growing chains and of oil soluble S analogues activated by the primary free‐radicals generated from APS (or from DBP) in the dispersed water droplets (or in the continuous oil‐phase) of the inverse microemulsion, respectively. With inverse microemulsions containing toluene (70.73 %)/S (2.44 %)/AOT(17.56 %)/water (7.32 %)/AAm (1.95 %), after polymerization (initiator APS, 3.04 × 10−2 mol dm−3 of water) and separation of the polymeric components, the following yields were obtained: AAm/S (co)polymer (89.20 mass%; ie 62.24 mass% of AAm structural units and 26.96 mass% of S structural units), polyacrylamide (9.4 mass%) and polystyrene (1.4 mass%). © 2000 Society of Chemical Industry  相似文献   

4.
A new selenium-based reversible addition-fragmentation chain transfer (RAFT) agent, 4-cyanopentanoic acid diselenobenzoate (RAFT-Se), was synthesized and utilized in the surface-initiated RAFT polymerization of 4-vinylpyridine (4VP) on silicon substrate. The results indicate that the RAFT-Se can control the surface-initiated RAFT polymerization, as evidenced by the number-average molecular weight that increase linearly with monomer conversion, molecular weights that agreed well with the predicted values, and the relatively low polydispersity indexes. The surface-initiated RAFT polymerization with the RAFT-Se was the same polymerization mechanism as its analog, 4-cyanopentanoic acid dithiobenzoate (RAFT-S). The grafting density of the poly(4-vinylpyridine) brushes prepared in the presence of RAFT-Se (σRAFT-Se) and RAFT-S (σRAFT-S) was estimated to be about 0.51 and 0.66 chains/nm2, respectively. In addition, the end of polymer chains on silicon substrate contains selenium element which may be useful in biosensor applications.  相似文献   

5.
Abstract

The early stages of the reversible addition/fragmentation transfer (RAFT) miniemulsion polymerization were simulated, focusing on the effect of the RAFT agent on droplet nucleation. For highly reactive RAFT agents, a large number of free radicals (Nc ) needed to be captured by a droplet in order to initiate polymerization in the droplet, which was totally different from the behavior of regular miniemulsion polymerization. More interestingly, it was found that droplet size had a significant influence on Nc value. It was shown that the RAFT agent has a significant influence on miniemulsion polymerization, leading to long induction periods and retardation of polymerization. In addition, miniemulsion droplets with different sizes are nucleated at different times, which could lead to very low nucleation efficiency. The results would be very helpful in understanding and designing a RAFT miniemulsion polymerization system.  相似文献   

6.
Diethyl-dithiocarbamic acid 2-[4-(2-diethylthiocarbamoylsulfanyl-2-phenyl-acetyl)-2,5-dioxo-piperazin-1-yl]-2-oxo-1-phenyl-ethyl ester as a novel di-functional reversible addition–fragmentation chain transfer (RAFT) agent was synthesized based on 2,5-diketopiperazine. The RAFT agent was designed based on the propagating core (R group) approach and characterized by 1H NMR, 13C NMR, FT-IR, elemental analysis, and melting point technique. Then, ethyl methacrylate was synthesized via free radical and RAFT polymerizations. To investigate the effect of the RAFT agent on the kinetic of polymerization, molecular weight, and polydispersity index (PDI) of polymers and also monomer conversion were monitored. Also, synthesized polymers were characterized by 1H NMR, 13C NMR, FT-IR, and TGA. Characterization analyses of synthesized RAFT agent were consistent with the structure. NMR and FTIR analyses confirmed end group incorporation of RAFT agent into polymer structure. According to results, poly(ethyl methacrylate) with low PDI (1.14) was obtained. Kinetic study indicated well-controlled polymerization of ethyl methacrylate by synthesized RAFT agent. TGA results showed that RAFT agent could reduce termination reactions and so reduce head-to-head bonds and chain-end unsaturation by keeping the concentration of radicals low enough.  相似文献   

7.
The concept of aqueous two‐phase polymerization and a new polymerization method for the preparation of water‐soluble polymers are presented. The phase diagram of poly(acrylamide) (PAAm)‐poly (ethylene glycol) (PEG)‐water two‐phase system was measured by the gel permeation chromatography (GPC). The aqueous two‐phase of PAAm‐PEG‐water system can be easily formed. The critical concentration of phase separation was affected by the molecular weight of PEG. The aqueous two‐phase polymerization of acrylamide (AAm) has been successfully carried out in the presence of PEG by using ammonium persulfate (APS) as the initiator. The polymerization behaviors with varying concentration of AAm, initiator and PEG, the polymerization temperature, the molecular weight of PEG, and emulsifier types were investigated. The activation energy of aqueous two‐phase polymerization of AAm was 132.3 kJ/mol. The relationship of initial polymerization rate (Rp0) with APS and AAm concentrations was Rp0 ∝ [APS]0.72 [AAm]1.28. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization was performed in the presence of a new RAFT agent based on bisphenol A and modified clays and successfully prepared polystyrene/MMT nanocomposite. The structure of RAFT agent was investigated by Fourier transform infrared spectroscopy (FT‐IR) and proton nuclear magnetic resonance spectroscopy (1H NMR). The polymer had well‐defined molecular weight and narrow polydispersity obtained by gel permeation chromatography (GPC). The morphology of polystyrene/MMT nanocomposite was investigated by X‐ray diffraction (XRD) and transmission electron microscopy (TEM) and was found to be exfoliated. Thermal stability of pure polystyrene and polystyrene/MMT synthesized via RAFT polymerization was also investigated and showed better thermal stability for nanocomposite. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
The reversible addition‐fragmentation chain transfer (RAFT) polymerization of chloroprene (CP) in an emulsion system using a dithiocarbamate‐type RAFT agent was studied. The controlled RAFT‐mediated emulsion polymerization was achieved by the appropriate combination of a RAFT agent and nonionic surfactant (polyoxyethylene phenyl ether) using a water‐soluble initiator (VA‐044) at 35 °C. An almost linear first‐order kinetic plot was observed until relatively high conversion (>80%) with molecular weights between 22,300 and 33,100 and relatively narrow molecular weight distributions (Mw/Mn ≦ 1.5) were achieved. The amount of the emulsifier used and the pH of the system were found to affect the controlled character, polymerization rate, and induction period, which are related to the size of the emulsion particles. Large‐scale RAFT‐mediated emulsion polymerization was also employed to afford industrially applicable poly(CP) (Mw > 25 × 104, resulting product > 2300 g). The vulcanized CP rubber obtained from the RAFT‐synthesized poly(CP) exhibited better physical properties, particularly tensile modulus and compression set, which may be due to the presence of the reactive end groups and the absence of low‐molecular‐weight products. We also evaluated the impact of the chain‐end structure on the mechanical and physical properties of these industrially important CP rubbers with carbon black. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46008.  相似文献   

10.
To examine the effect of mobil composition of matter 41 (MCM-41) nanoparticles on the kinetics of free radical and 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT)-mediated reversible addition fragmentation chain transfer (RAFT) polymerization, the polymerization reaction using various amounts of as-synthesized MCM-41 were performed. To study the reaction kinetics, conversion, molecular weight and polydispersity index (PDI) were obtained during the polymerization. Also, differential scanning calorimetry (DSC) was used to determine the glass transition temperature (T g) values of samples. According to the results, in free radical polymerization, conversion was increased by adding nanoparticles but the reverse trend was observed in RAFT polymerization. The same results were obtained for molecular weight values. In free radical polymerization, increasing the MCM-41 content led to higher PDI value, while in RAFT polymerization it did not appreciably affect the PDI value. In RAFT polymerization, no induction time was observed which indicates that DDMAT is an appropriate RAFT agent for styrene polymerization. Also in free radical polymerization, the addition of MCM-41 particles reduced T g values in comparison to neat PS. On the other hand, there was an increase in T g value up to 5 wt% of MCM-41 loading and a drastic reduction was observed in 7 wt% MCM-41 loading in the RAFT polymerization. Finally, the T g values of nanocomposites produced by RAFT method were higher than those in the nanocomposites synthesized using the free radical method.  相似文献   

11.
Comb-shaped graft copolymers with poly(methyl acrylate) as a handle were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and ring-opening polymerization (ROP) techniques in three steps. First, copolymers of poly(styrene-co-chloromethyl styrene), poly(St-co-CMS), were prepared by RAFT copolymerization of St and CMS using 1-(ethoxycarbonyl)prop-1-yl dithiobenzoate (EPDTB) as RAFT agent. Second, the polymerization of MA using poly(St-co-CMS)-SC(S)Ph as macromolecular chain transfer agent produced block copolymer poly(St-co-CMS)-b-PMA. Third, cationic ring-opening polymerization of THF was performed using poly(St-co-CMS)-b-PMA/AgClO4 as initiating system to produce comb-shaped copolymers. The structures of the poly(St-co-CMS), poly(St-co-CMS)-b-PMA and final comb-shaped copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography (GPC).  相似文献   

12.
Md. Zahangir Alam 《Polymer》2011,52(17):3696-3703
Azobenzene-functionalized star polymers were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. First, azobenzene-functionalized linear macro chain transfer agents (Macro-CTA) were synthesized by RAFT polymerization of 6-[4-(4′-Methoxyphenylazo)phenoxy]hexylmethacrylate (MAz6Mc) using 2-(2′-cyanopropyl)dithiobenzoate (CPDB) as RAFT agent in presence of AIBN as initiator in anisole. Subsequently, star azopolymers were synthesized by polymerization of a difunctional azomonomer, BMA2Az, with resultant Macro-CTA in presence of AIBN as initiator in anisole. Star azopolymers were characterized by GPC and spectroscopic methods. Thermal properties of star azopolymers were determined by DSC and TMA. Molecular weight versus conversion and molecular weight versus polymerization time attest to living polymerization characteristics. Photoisomerization behaviors of star azopolymers were studied by irradiation of both UV and visible light. Surface relief gratings were inscribed on star azopolymer films upon exposure to an interference pattern of (RCP + RCP) Ar+ laser. A diffraction efficiency of 20% was obtained by exposure of Star-8 K(2.6 K) polymer film to an (RCP + RCP) Ar+ laser for about 30 min. Surface relief grating structures were investigated by AFM and polarized optical microscopy.  相似文献   

13.
Degradation on polyacrylamides. Part II. Polyacrylamide gels   总被引:2,自引:0,他引:2  
The stability of polyacrylamide (PAAm) gels, synthesized by free radical polymerization of acrylamide (AAm) and N,N′-methylenebisacrylamide (BIS), was investigated when subjected to thermal and irradiation conditions. The PAAm gels were stable and did not release AAm under fluorescent light. In aqueous solution at 95 °C, a small amount of AAm was observed and it is shown that this is found from the pendant unsaturation of BIS in the gel network. Under UV irradiation, approximately one molecule of AAm is released for every 20,000 repeat monomer units in the gel. Gels were also synthesized from methacrylamide with BIS, AAm with N,N′-methylenebismethacrylamide and AAm with bisacryloyl-piperazine. Their stability is compared to the AAm/BIS gels.  相似文献   

14.
Reversible addition-fragmentation chain transfer (RAFT) polymerization has been applied in the synthesis of controlled molecular weights and dispersity of poly (2-ethylhexyl acrylate) (PEHA) by the miniemulsion technique. The RAFT agent (2-cyanoethyl morpholine-4-carbodithioate) was synthesized and used for 2-ethylhexyl acrylate (2-EHA) polymerization at molecular weights of 2 × 105, 7 × 10, 14 × 105, and 20 × 105 Da and polymerization reaction kinetics were studied. The RAFT agent was characterized by Fourier transform infrared (FTIR) spectroscopy, 1H-nuclear magnetic resonance (1H-NMR) spectroscopy, and mass spectroscopy. The synthesized emulsions were characterized by gel permeation chromatography, particle-size analysis, x-ray diffraction (XRD) analysis, and rheological characterization. The PEHAs were used as adhesives for coated and uncoated laminates with low and high surface energies and materials, and their properties such as tack, lap shear strength, peel strength, and shear holding strength were assessed.  相似文献   

15.
Different types of novel xanthates containing a vinyl ether moiety, S-benzyl O-2-(vinyloxy)ethyl carbonodithioate (Xanthate 1) and S-1-(ethoxycarbonyl)ethyl O-2-(vinyloxy)ethyl carbonodithioate (Xanthate 2) were synthesized. In particular, the Xanthate 2 enabled to design polyvinyl alcohol (PVA) stereoblock copolymer via the combination of living cationic vinyl polymerization and RAFT/MADIX polymerization. For cationic polymerization of isobutyl vinyl ether (IBVE) and tert-butyl vinyl ether (TBVE), the polymerizations were conducted under Xanthate 1-HCl adduct/SnCl4 and Xanthate 1 or 2-CF3COOH adduct/EtAlCl2 initiating system in the presence of ethyl acetate. Both systems proceeded in living polymerization fashion because the calculated Mn of both poly(IBVE) and poly(TBVE) matches with the Mn polymerized assuming that one polymer chain is formed per one molecule of the Xanthate 1 or 2. The resulting poly(TBVE) had a high number average α-end functionality as determined by MALDI-TOF-MS spectrometry. Xanthate 2 is more efficient for the following RAFT/MADIX polymerization of vinyl acetate (VAc). The RAFT/MADIX polymerization of vinyl acetate (VAc) using azobis(isobutyronitrile) (AIBN) at 60 °C was conducted using either poly(IBVE) or poly(TBVE) macro-CTA. The poly(TBVE) macro-CTAs synthesized from the Xanthate 2 were able to polymerize VAc smoothly via RAFT/MADIX polymerization, to prepare well-defined diblock copolymer, poly(TBVE)-b-poly(VAc). The resulting block copolymer was then hydrolyzed using KOH in methanol and followed by acid hydrolysis using HBr gas bubbling. The resulting polymer is inherently stereoblock like copolymer, isotactic rich PVA-b-atactic PVA (iPVA-b-aPVA). From the DSC measurement, the iPVA-b-aPVA has one glass transition at 69.5 °C and two melting points according to iPVA and aPVA at 237.9 and 198.1 °C, respectively. Thus, it can be suggested that the obtained PVA has two different geometries by the combination of living cationic polymerization and RAFT/MADIX polymerization.  相似文献   

16.
Today, we stand at the threshold of exploring carbon nanotube (CNT) based conducting polymer nanocomposites as a new paradigm for the next generation multifunctional materials. However, irrespective of the reported methods of composite preparation, the use of CNTs in most polymer matrices to date has been limited by challenges in processing and insufficient dispersability of CNTs without chemical functionalization. Thus, development of an industrially feasible process for preparation of polymer/CNT conducting nanocomposites at very low CNT loading is essential prior to the commercialization of polymer/CNT nanocomposites. Here, we demonstrate a process technology that involves in situ bulk polymerization of methyl methacrylate monomer in the presence of multi‐wall carbon nanotubes (MWCNTs) and commercial poly(methyl methacrylate) (PMMA) beads, for the preparation of PMMA/MWCNT conducting nanocomposites with significantly lower (0.12 wt% MWCNT) percolation threshold than ever reported with unmodified commercial CNTs of similar qualities. Thus, a conductivity of 4.71 × 10?5 and 2.04 × 10?3 S cm?1 was achieved in the PMMA/MWCNT nanocomposites through a homogeneous dispersion of 0.2 and 0.4 wt% CNT, respectively, selectively in the in situ polymerized PMMA region by using 70 wt% PMMA beads during the polymerization. At a constant CNT loading, the conductivity of the composites was increased with increasing weight percentage of PMMA beads, indicating the formation of a more continuous network structure of the CNTs in the PMMA matrix. Scanning and transmission electron microscopy studies revealed the dispersion of MWCNTs selectively in the in situ polymerized PMMA phase of the nanocomposites. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
Polyaniline [p(An)], one of the most known conducting polymers, was prepared within superporus nonionic polyacrylamide [p(AAm)], anionic poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid sodium salt) [p(AMPS)], and cationic poly(3‐acrylamidopropyltrimethyl ammonium chloride) [p(APTMACl)] cryogels. After they were synthesized, washed, and dried, the neutral p(AAm), anionic p(AMPS), and cationic p(APTMACl) cryogels were soaked in an ammonium persulfate/aniline solution (1:1.25 ratio) in 1 M hydrochloric acid for the in situ oxidative polymerization of p(An) with the cryogel matrices as templates or reactors. The prepared p(AAm)/p(An), p(AMPS)/p(An), and p(APTMACl)/p(An) semi‐interpenetrating polymer network (semi‐IPN) conductive cryogel composites were characterized with scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and conductivity analysis. The SEM images revealed that the superporus cryogel networks were almost completely filled with p(An) conductive polymers (CPs). Among the cryogel–CP semi‐IPNs, we found that p(AAm)/p(An) semi‐IPN conductive cryogel composites provided the highest conductivity values of 1.4 × 10?2 ± 4 × 10?4 S/cm; this was a 6.4 × 106 fold increase in the conductivity from the values of 2.2 × 10?9 ± 1 × 10?10 for p(AAm) cryogels. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44137.  相似文献   

18.
Synthesis of graphene-polymer nanocomposites is of current interest due to their exceptionally physical and chemical properties. However, the ability to produce conductive inks/coatings retaining the properties of the graphene is still a major challenge. In this study, functionalized polydopamine-coated reduced graphene oxide (PDA/RGO) was reacted with a RAFT agent, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT), to form macro-RAFT agents via an esterification reaction. The chemistry and kinetics of RAFT living/controlled polymerization of styrene was examined from the surface of these macro-RAFT agents to form polystyrene-grafted PDA/RGO (PS-g-PDA/RGO). By examination of the kinetics and GPC traces of the free and grafted polymer, living/controlled polymerization was confirmed. To examine the utility of this approach, the synthesized PS-g-PDA/RGO samples containing different amounts of grafted PS were employed in the preparation of graphene-PS nanocomposites by mixing them with commercial PS. Graphene was found to be well distributed in the PS matrix by this approach, increasing the decomposition temperature range. This research provides an efficient route towards the design and development of value-added functional graphene-PS composites.  相似文献   

19.
In this work, the reversible addition-fragmentation chain transfer (RAFT) polymerization of vinyl acetate (VAc) was successfully performed at room temperature using 60Co γ-irradiation as the initiation source. Under the dose rate of 10 Gy/min irradiation, the polymerization proceeded smoothly and converted approximately 90% of the monomer within 7 h. The molecular weight distribution (Mw/Mn) remained narrow (Mw/Mn < 1.35) up to 90% conversion. Compared to AIBN-initiated RAFT polymerization at 60 °C, 60Co γ-irradiation-initiated RAFT polymerization is a technique that can better control the molecular weight, especially at high conversion. The 1H NMR spectra and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry confirmed that most of the chain ends of poly(VAc) (PVAc) from γ-irradiated RAFT polymerization were living and can be reactivated for chain-extension reactions. The microstructures of PVAc from 60Co γ-irradiated RAFT polymerization (almost head-to-tail addition) and AIBN-initiated RAFT polymerization (5% tail-to-tail addition) were different, as revealed by the 13C NMR spectra. For the first time, 60Co γ-irradiation was used as an initiation source for RAFT polymerization of VAc at room temperature.  相似文献   

20.
In this study, an addition-fragmentation chain transfer agent bearing dithioester group is synthesized and applied to conventional dispersion photopolymerization of styrene in ethanol medium in the presence of poly(N-vinylpyrrolidone) stabilizer with varying amounts of the RAFT agent and optionally with conventional initiator, azobisisobutyronitril (AIBN) at various temperatures. Monomer conversion, molecular weight evolution, polydispersity index (PDI), and final particle sizes are measured. The PDI of the formed polymer is between 1.5 and 2.5 in the presence of RAFT agent. Higher concentration of RAFT agent or elevated temperature leads to the acceleration of the polymerization rate resulting in fast conversion, and reducing molecular weight and PDI. Stable polystyrene beads above 1 μm in diameter are successfully prepared by means of RAFT method applied in dispersion polymerization. The weight average particle sizes are between 1.08 and 2.04 μm, and the uniformity (Dw/Dn) is ranged from 1.26 to 2.51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号