首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Materials Letters》2007,61(11-12):2495-2498
Nitrogen-doped, p-type ZnO thin films have been grown successfully on sapphire (0001) substrates by atomic layer epitaxy (ALE) using Zn(C2H5)2 [Diethylzinc, DEZn], H2O and NH3 as a zinc precursor, an oxidant and a doping source gas, respectively. The lowest electrical resistivity of the p-type ZnO films grown by ALE was 210 Ω cm with a hole concentration of 3.41 × 1016 cm 3. Low temperature-photoluminescence analysis results support that the nitrogen ZnO after annealing is a p-type semiconductor. Also a model for change from n-type ZnO to p-type ZnO by annealing is proposed.  相似文献   

2.
Fluorine-doped ZnO transparent conductive thin films were successfully deposited on glass substrate by radio frequency magnetron sputtering of ZnF2. The effects of rapid thermal annealing in vacuum on the optical and electrical properties of fluorine-doped ZnO thin films have been investigated. X-ray diffraction spectra indicate that no fluorine compounds, such as ZnF2, except ZnO were observed. The specimen annealed at 500 °C has the lowest resistivity of 6.65 × 10? 4 Ω cm, the highest carrier concentration of 1.95 × 1021 cm? 3, and the highest energy band gap of 3.46 eV. The average transmittance in the visible region of the F-doped ZnO thin films as-deposited and annealed is over 90%.  相似文献   

3.
《Thin solid films》2006,515(2):567-570
It has been reported that a small amount of hydrogen in argon plasma induces an increase in the crystallite size of the as-deposited films. In addition, control of the hydrogen partial pressure is expected to improve the carrier mobility by increasing the crystallinity of the film (larger crystal size and lower grain boundary effects). Al doped ZnO (AZO) films were deposited by co-CFUBM (closed field unbalanced magnetron) sputtering. The ultimate aim was to deposit transparent films on a polymer substrate with a low electrical resistivity. Therefore, the structural, optical and electrical properties of AZO films were investigated as a function of the hydrogen partial pressure. A minimum resistivity and maximum transparency of 8 × 10 4 Ω cm and 88.1% were obtained, respectively. A critical PH2 was expected to improve the carrier mobility by increasing the crystallinity of the film. However, above this value, conductivity reduced due to the formations of oxides such as ZnO and Al2O3 in the AZO films.  相似文献   

4.
Studies on optical and electrical conductivity in nitrogen (N)-doped ZnO shells are explored. On incorporating low levels of nitrogen, the (0 0 2) X-ray diffraction (XRD) peak was found to be intensified significantly. Closely packed spherical crystallites of ZnO were transformed into flat-flakes during 0.1–0.3 M nitrogen doping and finally to shells, flattered at the center and tapered at ends, at 0.4 M. Both pristine and N-doped ZnO films show hydrophilic character. It was also found that the degree of transparency and the nature of conductivity as estimated by optical absorbance and Hall measurement, respectively, were strongly influenced by the levels of N-doping. Higher nitrogen doping led to decline in electrical resistivity and mobility due to an enhancement of free charge carriers. Presence of both (N2)O donor and (N)O acceptor peaks in X-ray photoelectron spectroscopy could be responsible for the formation of higher carrier concentration in ZnO films.  相似文献   

5.
《Materials Letters》2007,61(14-15):3030-3036
Transparent conducting thin films of F:SnO2 have been deposited onto preheated glass substrates by a spray pyrolysis technique using pentahydrate stannic chloride (SnCl4·5H2O) and ammonium fluoride (NH4F) as precursors and mixture of water and propane-2-ol as solvent. The concentration of SnCl4·5H2O and NH4F is kept fixed and the ratio of water and propane-2-ol solvent in the spraying solution is varied. A fine spray of the source solution using air as a carrier gas has grown films of thickness up to 995 nm. Optical absorption, X-ray diffraction, Van der Pauw technique for measurement of a sheet resistance and Hall effect measurements at room temperature for determination of carrier density and conductivity have been used. The as-deposited films are of polycrystalline SnO2 with a tetragonal crystal structure and are preferentially having orientation along the (200) direction with texture coefficient as high as 6.16. The average grain size for the as-deposited sample is found to be of the order of 44 nm. The films have moderate optical transmission (up to 70–85% at 550 nm). The figure of merit (ϕ) values vary from 1.95 · 10 3 to 35.68 · 10 3 Ω 1. The films are heavily doped, degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) for the optimized sample is 5.1 Ω. The films have a resistivity of 5.43 · 10 4 Ω cm and mobility around 7.38 cm2 V 1 s 1.  相似文献   

6.
Ga doped ZnO (GZO) and GaP codoped ZnO (GPZO) thin films of different concentrations (1–4 mol%) have been grown on sapphire substrates by RF sputtering for the fabrication of ZnO homojunction. The grown films have been characterized by X-ray diffraction (XRD), photoluminescence (PL), Hall measurement, energy dispersive spectroscopy (EDS), time-of-flight secondary ion mass spectrometer (ToF-SIMS), UV–Vis–NIR spectroscopy and atomic force microscopy (AFM). Unlike in conventional codoping, here we directly doped (codoped) GaP into ZnO to realize p-ZnO. The Hall measurements indicate that 2 and 4% GPZO films exhibit p-conductivity due to the sufficient amount of phosphorous incorporation while all the monodoped GZO films showed n-conductivity as expected. Among the p-ZnO films, 2% GPZO film shows low resistivity (2.17 Ωcm) and high hole concentration (1.8 × 1018 cm?3) by optimum incorporation of phosphorous due to best codoping. Similarly, among the n-type films, 2% GZO shows low resistivity (1.32 Ωcm) and high electron concentration (2.02 × 1019 cm?3) by optimum amount of Ga incorporation. The blue shift and red shift in NBE emission observed from PL acknowledged the formation of n- and p-conduction in monodoped and codoped films, respectively. The neutral acceptor bound exciton recombination (A0X) observed by low temperature PL for 2% GPZO confirms the p-conductivity. Further, the high concentration of P atoms than Ga observed from ToF-SIMS (2% GPZO) also supports the p-conductivity of the films. The fabricated p–n junction with best codoped p-(ZnO)0.98(GaP)0.02 and best monodoped n-Zn0.98Ga0.02O films showed typical rectification behavior of a diode. The diode parameters have also been estimated for the fabricated homojunction.  相似文献   

7.
Aluminum doped ZnO thin films (ZnO:Al) deposited on flexible substrates are suitable to be used as transparent conductive oxide (TCO) thin films in solar cells because of the excellent optical and electrical properties. TPT films are a kind of composite materials and are usually used as encapsulation material of solar panels. In this paper, ZnO:Al film was firstly deposited on transparent TPT substrate by RF magnetron sputtering. The structural, optical, and electrical properties of the film were investigated by X-ray diffractometry (XRD), scanning electron microscope (SEM), UV–visible spectrophotometer, as well as Hall Effect Measurement System. Results revealed that the obtained film had a hexagonal structure and a highly preferred orientation with the c-axis perpendicular to the substrate. Also, the film showed a high optical transmittance over 80% in the visible region and a resistivity of about 3.03 × 10? 1 Ω·cm.  相似文献   

8.
Zinc oxide thin films have been obtained by pulsed laser ablation of a ZnO target in O2 ambient at a pressure of 0.13 Pa using a pulsed Nd:YAG laser. ZnO thin films deposited on Si (1 1 1) substrates were treated at annealing temperatures from 400 °C up to 800 °C after deposition. The structural and optical properties of deposited thin films have been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra, resistivity and IR absorption spectra. The results show that the obtained thin films possess good single crystalline with hexagonal structure at annealing temperature 600 °C. Two emission peaks have been observed in photoluminescence spectra. As the post-annealing temperature increase, the UV emission peaks at 368 nm is improved and the intensity of blue emission at 462 nm decreases, which corresponds to the increasing of the optical quality of ZnO film and the decreasing of Zn interstitial defect, respectively. The best optical quality for ZnO thin films emerge at post-annealing temperature 600 °C in our experiment. The measurement of resistivity also proves the decrease of defects of ZnO films. The IR absorption spectra of sample show the typical Zn–O bond bending vibration absorption at wavenumber 418 cm−1.  相似文献   

9.
Zhong Zhi You  Gu Jin Hua 《Materials Letters》2011,65(21-22):3234-3236
Gallium-doped zinc oxide (ZnO:Ga) films were prepared on glass substrates by RF magnetron sputtering. The effect of growth temperature on microstructure, optical and electrical properties of the films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible spectrophotometer and four-point probe. The results show that all the films are polycrystalline and (002) oriented, and that the growth temperature significantly affects the microstructure and optoelectrical properties of the films. The film deposited at 670 K has the largest grain size of 71.9 nm, the lowest resistivity of 8.3 × 10? 4 Ω?cm and the highest figure of merit of 2.1 × 10? 2 Ω? 1. Furthermore, the optical energy gaps and optical constants were determined by optical characterization methods. The dispersion behavior of the refractive index was also studied using the Sellmeir's dispersion model and the oscillator parameters of the films were obtained.  相似文献   

10.
《Materials Research Bulletin》2006,41(8):1558-1564
Uniform, adherent and reproducible bismuth oxide thin films have been deposited on glass substrates from aqueous Bi(NO3)3 solution, using the solution spray technique. Their structural, surface morphological, optical, and electrical properties were investigated by XRD, AFM, optical absorption, electrical resistivity and thermo-emf measurements. The structural analysis from XRD pattern showed the formation of mixed phases of monoclinic Bi2O3 (predominant), tetragonal β-Bi2O3 and nonstiochiometric Bi2O2.33. The surface morphological studies on atomic force micrographs revealed round grain morphology of bismuth oxide crystallites. The optical studies showed a direct band gap of 2.90 eV for as-prepared bismuth oxide films. The electrical resistivity measurements of bismuth oxide films indicated a semiconducting behavior with the room temperature electrical resistivity of the order of 107 Ω cm. From thermo-emf measurements, the electrical conductivity was found to be of n-type.  相似文献   

11.
Thin films of cadmium oxide were thermally deposited on glass substrates at partial pressures of oxygen, pO2 in the range 1.33×10−2 to 0.133 Pa at a substrate temperature of 160 °C. Energy dispersive analysis of X-ray fluorescence (EDAX) revealed that the CdO films deposited at pO2 value of 4.00×10−2 Pa were nearly stoichiometric. X-ray diffractometry (XRD) confirmed the polycrystalline nature of the film structure. All the films showed an fcc structure of the NaCl-type, as the dominant phase. The films exhibited preferred orientation along the (1 1 1) diffraction plane. The texture coefficients calculated for the various planes at different oxygen partial pressures (pO2) indicated that the maximum preferred orientation of the films occurred along the (1 1 1) plane at an oxygen partial pressure of 4.00×10−2 Pa. This was interpreted in terms of oxygen chemisorption and desorption processes. The lattice parameters determined from the diffraction peaks were in the range 4.655–4.686 Å. The average lattice parameter a0 found by extrapolation using the Nelson–Riley function was 4.696 Å. Both the lattice parameter and the crystallite size were found to increase with increased partial pressure of oxygen. On the other hand, the strain and dislocation density were found to decrease as the partial pressure of oxygen was raised. A maximum (80%) in the optical transmittance at λ=600 nm and minimum in the electrical resistivity (9.1×10−4 Ω cm) of the films occurred at an optimum partial pressure of oxygen of 4.00×10−2 Pa. The results are discussed.  相似文献   

12.
Amorphous In–Ga–Zn–O (a-IGZO) thin films (~200 nm thickness) were deposited by radio-frequency (RF) magnetron sputtering on silicon and glass substrates at various working pressures (0.67–2.67 Pa) and a fixed oxygen-to-argon gas-flow ratio (O2/Ar = 5%). The transparency of all of the films was more than 85% in the visible range. With increased working pressure, the surface morphology of the films, as observed under atomic force microscopy (AFM), became rough; the optical band gap, estimated by Tauc plot, increased, and the mobility and carrier concentrations, according to Hall measurement, decreased and increased, respectively. The resistivity of the films initially decreased (up to 2.00 Pa working pressure) and then increased (at 2.67 Pa). It is suggested that the electrical property changes were affected by the role of the oxygen vacancies, whether as effective donors or as scattering centers.  相似文献   

13.
Polycrystalline samples of BaV13O18 and SrV13O18 were prepared by solid-state reaction of BaCO3, SrCO3, V2O5 and V at 1773–2073 K in flowing Ar. The crystal structures of BaV13O18 (R-3, ah=12.6293(10) Å, ch=7.0121(4) Å) and SrV13O18 (ah=12.5491(7) Å, ch=6.9878(3) Å) were refined by the Rietveld method using X-ray diffraction data. BaV13O18 exhibited semiconducting behavior with electrical resistivity from 5.8×10−3 to 2.7×10−3 Ω cm at 100–300 K. Electrical resistivity of SrV13O18 ranged from 1.5×10−3 to 1.8×10−3 Ω cm, and it increased slightly up to around 250 K and decreased above 250 K with increasing temperature. Negative Seebeck coefficients of both compounds at 100–300 K indicated that electron was the dominant carrier. BaV13O18 and SrV13O18 showed paramagnetism with the effective magnetic moment of 0.11μB and 0.15μB, respectively, at 10–100 K.  相似文献   

14.
《Materials Letters》2006,60(13-14):1594-1598
The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates is analyzed in this work. All the starting solutions employed were aged for 10 days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum resistivity in films ZnO:F deposited from a 0.4 M solution at 500 °C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500 °C. The obtaining of ZnO:F thin films, with a resistivity as low as 7.8 × 10 3 Ω cm (sheet resistance of 130 Ω/□ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.  相似文献   

15.
Highly conductive and transparent films of Ga-doped ZnO (GZO) have been prepared by pulsed laser deposition using a ZnO target with Ga2O3 dopant of 3 wt.% in content added. Films with resistivity as low as 3.3 × 10− 4 Ω cm and transmittance above 80% at the wavelength between 400 and 800 nm can be produced on glass substrate at room temperature. It is shown that a stable resistivity for use in oxidation ambient at high temperature can be attained for the films. The electrical and optical properties, as well as the thermal stability of resistivity, of GZO films were comparable to those of undoped ZnO films.  相似文献   

16.
《Thin solid films》2006,494(1-2):42-46
Amorphous Zn–Sn–O (ZTO) thin films with relative Zn contents (= [at.% Zn]/([at.% Zn] + [at.% Sn])) of 0, 0.08 and 0.27 were fabricated by co-sputtering of SnO2 and ZnO targets at room temperature. Changes in structural, electrical and optical properties together with electron transport properties were examined upon post-annealing treatment in the temperature range from 200 to 600 °C in vacuum and in air. Characterization by XRD showed that an amorphous ZTO thin film crystallized at higher temperatures with increasing Zn content. Crystallized ZTO films with a relative Zn content of 0.27 might not contain a single SnO2 phase which is observed in the films of the other compositions. Amorphous ZTO films showed decreasing electrical resistivities with increasing annealing temperature, having a minimum value of 1 × 10 3 Ω cm. Upon crystallization, the resistivities increased drastically, which was attributed to poor crystallinity of the crystallized films. All the ZTO films were found to be degenerate semiconductors with non-parabolic conduction bands having effective masses varying from 0.15 to 0.3 in the carrier concentration range of 6 × 1018 to 2 × 1020 cm 3. As for a ZTO film with a relative Zn content of 0.27, the degree of non-parabolicity was much lower compared with films of the other compositions, leading to a relatively stable mobility over a wide range of carrier concentration.  相似文献   

17.
Transparent conductive nano ZnO thin films with different Ga doping concentrations (1, 3, 5, 7 at.%) were prepared on glass substrate by RF magnetron sputtering. The influence of Ga doping concentration on the structural, electrical and optical properties of ZnO:Ga films was investigated by XRD, SEM, Hall measurement and optical-transmission spectroscopy. It shows that the nano ZnO:Ga films are dense and flat, and have polycrystalline structure with preferential (002) and weak (101) orientation. The grain sizes, carrier concentration and Hall mobility changes non-linearly with the increase of Ga-content. The lowest resistivity of 1.44×10−3 Ωcm appears at 3 at.% Ga doping concentration. The average transmittance of the films is about 80∼90% in the visible range. The optical band gap obtained for these films is larger than for pure ZnO (∼3.37 eV).  相似文献   

18.
《Materials Research Bulletin》2013,48(11):4486-4490
Highly infrared transparent conductive ruthenium doped yttrium oxide (RYO) films were deposited on zinc sulfide and glass substrates by reactive magnetron sputtering. The structural, optical, and electrical properties of the films as a function of growth temperature were studied. It is shown that the sputtered RYO thin films are amorphous and smooth surface is obtained. The infrared transmittance of the films increases with increasing the growth temperature. RYO films maintain greater than ∼65% transmittance over a wide wavelength range from 2.5 μm to 12 μm and the highest transmittance value reaches 73.3% at ∼10 μm. With increasing growth temperature, the resistivity changed in a wide range and lowest resistivity of about 3.36 × 10−3 Ω cm is obtained at room temperature. The RYO thin films with high conductivity and transparency in IR spectral range would be suitable for infrared optical and electromagnetic shielding devices.  相似文献   

19.
Transparent conducting ZnO thin films doped with Al have been prepared by sol–gel method, which were characterized by X-ray diffraction, atomic force microscopy and ultra-violet spectrometer. The films showed a hexagonal wurtzite structure and high preferential c-axis orientation. The optical transmittance spectra of the films showed the transmittance higher than 85% within the visible wavelength region. A minimum resistivity of 6.2 × 10−4 Ω cm was obtained for the film doped with 1.5 mol.% Al, preheated at 300 °C for 15 min and post-heated at 530 °C for 1 h.  相似文献   

20.
Nanocrystaline samples of ZnO(Fe) were synthesized by traditional wet chemical method followed by calcinations. Samples were characterized by X-ray diffraction to determine composition of the samples (ZnO, ZnFe2O4 and Fe2O3) and the mean crystalline size (from 8 to 51 nm). In this paper we report the experimental spectra of Raman scattering (from 200 to 1600 cm−1) with surface optical phonons (SOP) in range of 500–550 cm−1. The phonon of registered phase’s exhibit effects connected to phase concentration, while the SOP phonon mode exhibit significant confinement effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号