首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
This paper deals with the analysis of active constrained layer damping (ACLD) of geometrically nonlinear transient vibrations of skew laminated composite plates using skew or rectangular patches of the ACLD treatment. The constraining layer of the patch of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composite material. The Golla–Hughes–McTavish method has been used to model the constrained viscoelastic layer of the ACLD treatment in the time domain. A coupled electromechanical nonlinear three dimensional finite element model of skew laminated thin composite plates integrated with the skew or rectangular patches of ACLD treatment has been derived. The performance of the patches is investigated for different configurations of their placements on the top surface of the skew substrate plates. The analysis reveals that the ACLD treatment significantly improves the active damping characteristics of the skew laminated composite plates over the passive damping for suppressing their geometrically nonlinear transient vibrations. It is found that even though the substrate laminated plates are skew, a rectangular patch of the ACLD treatment located at the centre of the top surface of the substrate should be used for optimum damping of geometrically nonlinear vibrations of skew laminated composite plates irrespective of their skew angles and boundary conditions. The effects of piezoelectric fiber orientation angle and the skew angles of the substrate plates on the control authority of the ACLD patches have been emphatically investigated.  相似文献   

2.
In this paper, an analysis for active constrained layer damping (ACLD) of rotating composite beams undergoing geometrically non linear vibrations has been carried out. Commercially available vertically/obliquely reinforced 1-3 piezoelectric composite (PZC) material has been used as the material of the constraining layer of the ACLD treatment. A finite element (FE) model has been derived to carry out the analysis. The substrate beam is considered thin and hence, first order shear deformation theory (FSDT) and von-Karman type nonlinear strain–displacement relations are used to derive the coupled electromechanical nonlinear FE model. The rotary effect has been suitably modelled by incorporating extensional strain energy due to centrifugal force. The Golla–Hughes–McTavish method has been employed to model the constrained viscoelastic layer of the ACLD treatment in the time domain. The numerical responses revealed that the ACLD treatment with 1-3 PZC constraining layer efficiently performs the task of active damping of geometrically nonlinear vibrations of the rotating composite beams. The effects of the fibre orientation angles of the angle-ply substrate beams and the 1-3 PZC constraining layer on the ACLD of the geometrically nonlinear vibrations have been investigated. Also, the effect of the thickness variations of the 1-3 PZC layer and the viscoelastic constrained layer on the damping characteristics of the overall rotating composite beams has been studied.  相似文献   

3.
This paper is concerned with the development of mesh free model for the performance analysis of active constrained layered damping (ACLD) treatments on smart laminated composite beams. The overall structure is composed of a substrate laminated composite beam integrated with a viscoelastic layer and a piezoelectric layer attached partially or fully at the top surface of the substrate beam. The piezoelectric layer acts as the active constraining layer of the smart beam and the viscoelastic layer acts as the constrained layer. A layer wise displacement theory has been used to derive the models. Both symmetric cross-ply and antisymmetric angle-ply laminated beams are considered for the numerical analysis. It is observed that ACLD treatment significantly improves the active damping properties of the substrate beam. The numerical results also reveal that the triangular ACLD treatment is more effective than the rectangular ACLD treatment of same thickness and volume for active damping of smart composite beams.  相似文献   

4.
基于作者最近导出的被动约束层阻尼(PCLD)圆柱壳的一阶整合矩阵微分方程,结合压电材料本构关系和比例微分负增益反馈控制策略(PD),建立了一种求解主动约束层阻尼(ACLD)圆柱壳动力学问题的新传递矩阵方法。提出的ACLD圆柱壳的一阶矩阵微分方程,采用了简化的机电耦合模型。通过对ACLD圆柱壳自由振动及其在地震激励作用下的动力学响应分析,表明ACLD圆柱壳的阻尼特性和减振效果相对于PCLD圆柱壳具有明显优势,并且发现采用周向分块敷设ACLD,且施加与结构变形中的占优模态相匹配的控制电压分布方式对地震激励的抑制效果更好。  相似文献   

5.
This paper deals with the investigation of active, constrained layer damping (ACLD) of smart, functionally graded (FG) plates. The constraining layer of the ACLD treatment is considered to be made of a piezoelectric, fiber-reinforced composite (PFRC) material with enhanced effective piezoelectric coefficient that quantifies the in-plane actuating force due to the electric field applied across the thickness of the layer. The Young's modulus and the mass density of the FG plates are assumed to vary exponentially along the thickness of the plate, and the Poisson's ratio is assumed to be constant over the domain of the plate. A finite-element model has been developed to model the open-loop and closed-loop dynamics of the FG plates integrated with two patches of ACLD treatment. The frequency response of the plates revealed that the active patches of ACLD treatment significantly improve the damping characteristics of the FG plates over the passive damping. Emphasis has been placed on investigating the effect of variation of piezoelectric fiber angle in the constraining layer of the ACLD treatment on the attenuating capability of the patches. The analysis also revealed that the activated patches of the ACLD treatment are more effective in controlling the vibrations of FG plates when the patches are attached to the surface of the FG plates with minimum stiffness than when they are attached to the surface of the same with maximum stiffness.  相似文献   

6.
This paper deals with the analysis of active constrained layer damping (ACLD) of large amplitude vibrations of smart magneto–electro–elastic (MEE) doubly curved shells. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composite (PZC). The constrained viscoelastic layer of the ACLD treatment is modeled by using the Golla–Hughes–McTavish method in the time domain. A three-dimensional finite element model of the overall smart MEE doubly curved shells has been developed taking into account the effects of electro–elastic and magneto–elastic couplings, while the von Kármán type nonlinear strain displacement relations are used for incorporating the geometric nonlinearity. Influence of the curvature ratio, the curvature aspect ratio, the thickness aspect ratio on the nonlinear frequency ratios of the MEE doubly curved shells has been investigated. Effects of the location of the ACLD patches and the edge boundary conditions on the control of geometrically nonlinear vibrations of paraboloid and hyperboloid MEE shells have been studied. Particular attention has been paid to investigate the performance of the ACLD treatment due to the variation of the piezoelectric fiber orientation angle in the 1–3 PZC constraining layer of the ACLD treatment.  相似文献   

7.
This paper deals with the analysis of active constrained layer damping (ACLD) of geometrically nonlinear vibrations of sandwich plate with orthotropic laminated composite faces separated by a flexible core. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1?C3 piezoelectric composites. The Golla?CHughes?CMcTavish method has been implemented to model the constrained viscoelastic layer of the ACLD treatment in time domain. The first-order shear deformation theory and the Von Kármán type nonlinear strain displacement relations are used for analyzing this coupled electro-elastic problem. A three dimensional finite element model of smart laminated composite sandwich plate integrated with ACLD patches has been developed to investigate the performance of these patches for controlling the geometrically nonlinear vibrations of the plates. The numerical results indicate that the ACLD patches significantly improve the damping characteristics of the sandwich plates with laminated cross-ply and angle-ply facings for suppressing their geometrically nonlinear vibrations. Particular emphasis has been placed on investigating the effect of the variation of piezoelectric fiber orientation angle on the performance of the ACLD treatment.  相似文献   

8.
This paper addresses the analysis of active constrained layer damping (ACLD) of geometrically nonlinear transient vibrations of laminated thin composite cylindrical shallow shells using vertically reinforced 1-3 piezoelectric composite (PZC). The constraining layer of the ACLD treatment is considered to be made of this 1-3 PZC material. The Golla–Hughes–McTavish (GHM) method has been implemented to model the constrained viscoelastic layer of the ACLD treatment in time domain. The Von Kármán type non-linear strain displacement relations and the first-order shear deformation theory (FSDT) are used for deriving this electromechanical coupled problem. A three dimensional finite element (FE) model of smart composite shallow shells integrated with a patch of such ACLD treatment has been developed to demonstrate the performance of the patch on enhancing the damping characteristics of thin laminated cylindrical shells, in controlling the geometrically nonlinear transient vibrations. The numerical results indicate that the ACLD patch significantly improves the damping characteristics of the shells for suppressing the geometrically nonlinear transient vibrations of the shells. The effect of variation of fiber orientation in the PZC material on the control authority of the ACLD patch has also been investigated.  相似文献   

9.
In this article, a three-dimensional fractional order derivative model has been developed for the constrained viscoelastic layer of the active constrained layer damping (ACLD) treatment of laminated composite shells undergoing geometrically nonlinear vibrations. The constraining layer of the ACLD treatment is made of vertically/obliquely reinforced 1–3 piezoelectric composites and acts as the distributed actuator. A three-dimensional smart nonlinear finite element model has been developed. Several numerical results are presented to check the accuracy of the present three-dimensional fractional derivative model of the constrained viscoelastic layer for smart damping of geometrically nonlinear vibrations of laminated composite shells.  相似文献   

10.
An electromechanically coupled finite element model has been presented in Part 1 of this paper in order to handle active–passive damped multilayer sandwich beams, consisting of a viscoelastic core sandwiched between layered piezoelectric faces. Its validation is achieved, in the present part, through modal analysis comparisons with numerical and experimental results found in the literature. After its validation, the new finite element is applied to the constrained optimal control of a sandwich cantilever beam with viscoelastic core through a pair of attached piezoelectric actuators. The hybrid damping performance of this five‐layer configuration is studied under viscoelastic layer thickness and actuator length variations. It is shown that hybrid active–passive damping allows to increase damping of some selected modes while preventing instability of uncontrolled ones and that modal damping distribution can be optimized by proper choice of the viscoelastic material thickness. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Geometrically nonlinear dynamic analysis of smart functionally graded (FG) sandwich plates integrated with the patches of active constrained layer damping (ACLD) treatment has been carried out by the finite element method. The constraining layer of the ACLD treatment is considered to be made of vertically/obliquely reinforced 1–3 piezoelectric composite while the constrained layer is made of a viscoelastic material, which is modeled using the Golla–Hughes–McTavish method in the time domain. The top and bottom faces of the substrate sandwich plate are composed of the FG isotropic material whose mechanical properties are assumed to vary according to a standard power-law distribution in terms of the volume fractions of the constituents while the core layer may be either a soft honeycomb material or a hard ceramic material. Several FG sandwich plates with different core configurations are studied to evaluate the numerical results. The numerical results indicate that the ACLD patches significantly improve the damping characteristics of the FG sandwich plates for suppressing their geometrically nonlinear vibrations. Effects of metal- or ceramic-rich top and bottom surfaces, the variation of power-law index on the control authority of the ACLD patches have been investigated. Emphasis has also been placed on investigating the effect of the variation of piezoelectric fiber orientation angle on the performance of the ACLD patches.  相似文献   

12.
摘要:基于一般情况下的线弹性薄壳方程和势流理论,考虑被动约束层阻尼(PCLD)的剪切变形的能量耗散和液固耦合相互作用,文中首先导出了PCLD圆柱层合壳的整合一阶矩阵微分方程,该方程的状态向量的每个元素都有明确的物理意义,更方便用于层合壳体在各种边界支承条件的动力学问题的求解。然后通过将流体动压力写成含待求系数的解析形式,借助流固交接条件、新型齐次扩容精细积分法和叠加原理,建立了一种分析该类结构耦振问题的高效率、高精度的半解析半数值方法。通过与无水、两端简支的全覆盖PCLD圆柱壳在轴对称情况下自由振动的解析解结果比较,验证了本文方法的有效性。最后基于文中提出的方法,研究了部分覆盖PCLD贮液圆柱容器在地面运动激励下的动力响应,研究了PCLD厚度、长度、敷设位置以及粘弹芯的复剪切模量模型对减振效果的影响。  相似文献   

13.
This paper addresses the analysis of active constrained layer damping (ACLD) of geometrically nonlinear transient vibrations of laminated thin composite cylindrical panels using piezoelectric-fiber- reinforced composite (PFRC) materials. The constraining layer of the ACLD treatment is considered to be made of the PFRC materials. The Golla–Hughes–McTavish (GHM) method has been implemented to model the constrained viscoelastic layer of the ACLD treatment in time domain. The Von Kármán type-nonlinear strain-displacement relations and a simple first-order shear deformation theory are used for deriving this electromechanical coupled problem. A three-dimensional finite element (FE) model of smart composite panels integrated with the patches of such ACLD treatment has been developed to demonstrate the performance of these patches on enhancing the damping characteristics of thin symmetric and antisymmetric laminated cylindrical panels in controlling the geometrically nonlinear transient vibrations. The numerical results indicate that the ACLD patches significantly improve the damping characteristics of both symmetric and antisymmetric panels for suppressing the geometrically nonlinear transient vibrations of the panels. The effect of the shallowness angle of the panels on the control authority of the patches has also been investigated.  相似文献   

14.
针对夹层约束阻尼梁结构的减振特性进行深入研究,在其基础上扩展多处敷设增设支撑层的约束阻尼,建立了多点铺设增设支撑层约束阻尼梁的振动特性模型,利用粘弹性材料的Maxwell模型、假设模态法、有限元理论和力学原理,结合功能特性方程和Lagrange方程,导出了增设支撑层约束阻尼梁的振动位移响应方程。通过对敷设双支撑约束阻尼简支梁在支撑层厚度变化的参数研究,可以看到增设适当厚度的支撑层能够达到更好的减振效果。  相似文献   

15.
主动约束层阻尼振动控制技术现状及展望   总被引:7,自引:0,他引:7  
本文在建模、控制策略,系统实现和应用等多方面对主动约束阻尼振动控制技术的历史,现状进行了分析,指出了实施主动约束层阻尼振动控制技术继续发展的技术及待解决的问题。  相似文献   

16.
在柔性结构的减振处理中,传统被动无磁约束减振(PCLD)方法已被广泛采用,但是由于阻尼材料特性受温度和频率的影响,其减振效果受到限制。而采用在约束层上设置永磁体的方法(MCLD)可使阻尼层达到比传统约束阻尼处理方法更高的剪应变,从而增强粘弹层的阻尼耗能,提高低阶模态的减振效果。针对悬臂板的(m=1,n=1)、(m=2,n=1)的两阶扭转模态,在这两阶的方向上的节线y=B/2处设置永磁体,节线两侧设置磁约束阻尼层,研究MCLD的阻尼改进效果及规律。研究表明,在悬臂板的自由端铺设磁阻尼层时,能有效地提高阻尼减振效果;另外,对不同阻尼层的宽度,MCLD仍具有提高阻尼的能力。  相似文献   

17.
This article deals with the active structural-acoustic control of thin laminated composite plates using vertically reinforced 1–3 piezoelectric fiber-reinforced composite (PFRC) material for constraining layer of active constrained layer damping (ACLD) treatment. A finite element model is developed for the laminated composite plates integrated with ACLD patches and coupled with acoustic cavity to describe the coupled structural-acoustic behavior of the plates enclosing the cavity. Both in-plane and out of plane actuation of the constraining layer of the ACLD treatment have been utilized for deriving the finite element model. The analysis revealed that the vertical actuation dominates over the in-plane actuation. The performance of PFRC layers of the patches has been investigated for active control of sound radiated from thin symmetric and antisymmetric cross-ply and antisymmetric angle-ply laminated composite plates into the acoustic cavity.  相似文献   

18.
磁约束阻尼的减振机理   总被引:1,自引:0,他引:1  
采用在约束层端部上设置永磁体的新方法可使阻尼层获得比传统约束阻尼处理方法更高的剪应变,从而增强粘弹层的阻尼耗能。本文应用Hamilton原理,考虑永磁体的影响,推导了对称双层夹心悬臂梁的运动方程,对模型进行了实验验证;分析了一阶共振时,永磁体对共振振幅、阻尼层剪应变、约束层作用力的影响,阐明了新型的磁机敏约束阻尼方法的减振机理。  相似文献   

19.
This paper deals with the active structural acoustic control of thin laminated composite plates using piezoelectric fiber-reinforced composite (PFRC) material for the constraining layer of active constrained layer damping (ACLD) treatment. A finite element model is developed for the laminated composite plates integrated with the patches of ACLD treatment to describe the coupled structural-acoustic behavior of the plates enclosing an acoustic cavity. The performance of the PFRC layers of the patches has been investigated for active control of sound radiated from thin symmetric and antisymmetric cross-ply and antisymmetric angle-ply laminated composite plates into the acoustic cavity. The significant effect of variation of piezoelectric fiber orientation in the PFRC layer on controlling the structure-borne sound radiated from thin laminated plates has been investigated to determine the fiber angle in the PFRC layer for which the structural-acoustic control authority of the patches becomes maximum.  相似文献   

20.
This paper presents experimental investigation on the damping effects of constrained layer damping treatment on a curved panel. Vibration attenuation of the curved panel is achieved by attaching constraining layer damping patches at the optimal locations. The placement strategies of constrained layer patches are devised using the modal strain energy (MSE) method. Locations for application of damping patches are those, where modal strain energy is maximum for the particular mode. The treatment is then applied to the elements that have highest MSE in order to target specific modes of vibrations. Extensive experiments are conducted by making number of separate samples of viscoelastic and constrained layer damping patches for each configuration to damp different modes simultaneously or independently. The experimental results demonstrate utility of the modal strain energy technique as an effective tool for selecting the locations of the constrained layer damping treatment to achieve desired damping characteristics over a broad frequency band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号