首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Wind characteristics and wind turbine characteristics in Taiwan have been thoughtfully analyzed based on a long-term measured data source (1961–1999) of hourly mean wind speed at 25 meteorological stations across Taiwan. A two-stage procedure for estimating wind resource is proposed. The yearly wind speed distribution and wind power density for the entire Taiwan is firstly evaluated to provide annually spatial mean information of wind energy potential. A mathematical formulation using a two-parameter Weibull wind speed distribution is further established to estimate the wind energy generated by an ideal turbine and the monthly actual wind energy generated by a wind turbine operated at cubic relation of power between cut-in and rated wind speed and constant power between rated and cut-out wind speed. Three types of wind turbine characteristics (the availability factor, the capacity factor and the wind turbine efficiency) are emphasized. The monthly wind characteristics and monthly wind turbine characteristics for four meteorological stations with high winds are investigated and compared with each other as well. The results show the general availability of wind energy potential across Taiwan.  相似文献   

2.
The wind speed distribution and wind energy potential are investigated in three selected locations in Oyo state using wind speed data that span between 12 and 20 years measured at 10 m height. In addition, the performance of selected small to medium size wind turbines in these sites were examined. The annual energy output and capacity factor for these turbines were determined. It was found that the monthly mean wind speeds in Oyo state ranges from 2.85 m/s to 5.20 m/s. While the monthly mean power density varies between 27.08 W/m2 and 164.48 W/m2, while the annual mean power density is in the range of 67.28 W/m2 and 106.60 W/m2. Based on annual energy output, wind turbines with cut-in wind speed of about 2.5 m/s and moderate rated wind speeds will be best suited for all the sites.  相似文献   

3.
In this study, wind characteristics and wind power potential of Johannesburg are investigated using 5-min average time series wind speed collected between 2005 and 2009 at anemometer height of 10 m. The statistical distribution that best fits the empirical wind speed data at the site of study is first determined based on the coefficient of determination and root mean square error criteria. The statistical parameters and wind power density based on this model are estimated for different months of the year using standard deviation method. Economic analyses of some wind turbines are also carried out. Some of the key results show that the site is only suitable for small wind turbines in a standalone application. A 10 kW wind turbine with cut-in wind speed of 3.5 m/s, rated wind speed of 9 m/s, and cut-out wind speed of 25 m/s seems most appropriate in Johannesburg with the lowest cost that varies from 0.25 to 0.33 $/kWh.  相似文献   

4.
A simple nomogram is constructed to estimate the power generated by a wind turbine generator (WTG) operated at near maximum efficiency using optimum tip-speed ratio between cut-in and rated wind speed, and at constant power using optimum pitch control between rated and cut-out wind speed. The nomogram is based on information that is readily available for commercial WTGs as well as some simple statistical quantities for the wind at the site. When the wind speed is described by a Weibull distribution, the power of a WTG is estimated in terms of three generalized non-dimensional parameters. When a Rayleigh distribution is employed only two parameters are necessary. A second nomogram is also developed for those less common cases where a small correction of the results of the first nomogram is needed. A mathematical analysis is presented which allows for the construction of single chart nomograms without sacrificing the necessary accuracy. Two application examples demonstrate the degree of accuracy achieved by the nomograms and the advantages they offer for parametric analyses as regards convenience and labor.  相似文献   

5.
Using output from a high‐resolution meteorological simulation, we evaluate the sensitivity of southern California wind energy generation to variations in key characteristics of current wind turbines. These characteristics include hub height, rotor diameter and rated power, and depend on turbine make and model. They shape the turbine's power curve and thus have large implications for the energy generation capacity of wind farms. For each characteristic, we find complex and substantial geographical variations in the sensitivity of energy generation. However, the sensitivity associated with each characteristic can be predicted by a single corresponding climate statistic, greatly simplifying understanding of the relationship between climate and turbine optimization for energy production. In the case of the sensitivity to rotor diameter, the change in energy output per unit change in rotor diameter at any location is directly proportional to the weighted average wind speed between the cut‐in speed and the rated speed. The sensitivity to rated power variations is likewise captured by the percent of the wind speed distribution between the turbines rated and cut‐out speeds. Finally, the sensitivity to hub height is proportional to lower atmospheric wind shear. Using a wind turbine component cost model, we also evaluate energy output increase per dollar investment in each turbine characteristic. We find that rotor diameter increases typically provide a much larger wind energy boost per dollar invested, although there are some zones where investment in the other two characteristics is competitive. Our study underscores the need for joint analysis of regional climate, turbine engineering and economic modeling to optimize wind energy production. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A. Kumar  K. Stol 《风能》2010,13(5):419-432
As wind turbines are becoming larger, wind turbine control must now encompass load control objectives as well as power and speed control to achieve a low cost of energy. Due to the inherent non‐linearities in a wind turbine system, the use of non‐linear model‐based controllers has the potential to increase control performance. A non‐linear feedback linearization controller with an Extended Kalman Filter is successfully used to control a FAST model of the controls advanced research turbine with active blade, tower and drive‐train dynamics in above rated wind conditions. The controller exhibits reductions in low speed shaft fatigue damage equivalent loads, power regulation and speed regulation when compared to a Gain Scheduled Proportional Integral controller, designed for speed regulation alone. The feedback linearization controller shows better rotor speed regulation than a Linear Quadratic Regulator (LQR) at close to rated wind speeds, but poorer rotor speed regulation at higher wind speeds. This is due to modeling inaccuracies and the addition of unmodeled dynamics during simulation. Similar performance between the feedback linearization controller and the LQR in reducing drive‐train fatigue damage and power regulation is observed. Improvements in control performance may be achieved through increasing the accuracy of the non‐linear model used for controller design. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, rotation rates and power coefficients of miniature wind turbine rotor models manufactured using NACA profiles were investigated. For this purpose, miniature rotor models with 310 mm diameter were made from “Balsa” wood. When all properties of rotor models were taken into account, a total of 180 various combinations were obtained. Each combination was coded with rotor form code. These model rotors were tested in a wind tunnel measurement system. Rotation rates for each rotor form were determined based on wind speed. Power coefficient values were calculated using power and tip speed rates of wind. Rotor models produced a rotation rate up to 3077 rpm, with a power coefficient rate up to 0.425. Rotor models manufactured by using NACA 4412 profiles with 0 grade twisting angle, 5 grade blade angle, double blades had the highest rotation rate, while those manufactured by using NACA 4415 profiles with 0 grade twisting angle, 18 grade blade angle, 4 blades had the highest power coefficient.  相似文献   

8.
Ssu-yuan Hu  Jung-ho Cheng   《Renewable Energy》2007,32(11):1934-1947
This paper presents a simple method for determination of pairing between sites and wind generators. It requires six parameters to describe the matching between turbine models and site characteristics, and the energy output performance can thus be easily estimated and used as the index of pairing effectiveness. To describe a Weibull model of wind speed distribution, the shape parameter and the scale parameter are necessarily required. Besides, four other parameters are chosen to specify the characteristics of the power curve of a wind generator: the cut-in speed, the rated speed, the cut-off speed and the nominal power. By combining these six parameters, the average power output of some particular wind turbine at a specific site can be practically and quickly approximated as a reference for turbine siting consideration. An example is also shown to demonstrate the utilization of the proposed method to choose between a group of wind sites and a list of commercial wind turbines.  相似文献   

9.
The wind data of several measurement sites in Somalia have been analysed in order to characterize the wind potentiality in relation to the type of wind generators; these have been defined by a simple model of the system output. The relation between machine and local frequency distribution as to energy extraction can be defined by a parameter (“site effectiveness”), which is maximized by a suitable combination of the rated and cut-in wind speed. On this basis it is shown that Somalia is characterized by wind frequency distributions that can be exploited in the best way by relatively slow rather than fast wind machines.  相似文献   

10.
H. Li  Z. Chen 《Renewable Energy》2009,34(4):1175-1184
This paper investigates the possible site matching of the direct-drive wind turbine concepts based on the electromagnetic design optimization of permanent magnet (PM) generator systems. Firstly, the analytical models of a three-phase radial-flux PM generator with a back-to-back power converter are presented. The optimum design models of direct-drive PM wind generation system are developed with an improved genetic algorithm, and a 500-kW direct-drive PM generator for the minimal generator active material cost is compared to demonstrate the effectiveness of the design optimization. Forty-five PM generator systems, the combinations of five rated rotor speeds in the range of 10–30 rpm and nine power ratings from 100 kW to 10 MW, are optimally designed, respectively. The optimum results are compared graphically in terms of the generator design indexes. Next, according to the design principle of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind generator systems is evaluated at eight potential sites with annual mean wind speeds in the range of 3–10 m/s, respectively. These results have shown the suitable designs for the optimum site matching of the investigated PM generator systems.  相似文献   

11.
H. D. Ammari  A. Al-Maaitah 《Energy》2003,28(15):1579-1592
Wind data gathered over 3–10 years is used for a feasibility analysis of optimum future utilization of wind-generator potentiality in 22 sites covering all landscape types and regions in Jordan. The yearly mean wind speed and the yearly average available wind energy flux were computed for each site. Yearly mean wind speeds at a height of 24 m could reach as high as 7.6 m/s and available wind energy flux close to 3 MWh/m2/year could be attained. Detailed technical assessment for the nine most promising potential wind sites was made using the site effectiveness approach. The maximum site effectiveness and its corresponding cut-in speed were indicated, both of which depended on the site. The investigation was performed assuming three models of small and medium size wind machines representing different ranges of characteristic speeds and rated power suitable for water pumping and electric supply. The results show that small and medium wind turbines could be installed in the highlands and desert regions and utilized for water supply and electrical power generation, provided the correct wind machine-site is selected.  相似文献   

12.
Supplementing our energy base with clean and renewable sources of energy has become imperative due to the present day's energy crisis and growing environmental consciousness. Wind is one of the potential renewable energy sources, which can be harnessed in a commercial scale for various end-uses. A precise knowledge of wind regime characteristics is a pre-requisite for the efficient planning and implementation of any wind energy project. In the present study, a method for characterizing wind regimes, bringing out their energy potential, is discussed. A Rayleigh distribution was adopted for defining the distribution of wind velocity in terms of its probability density and cumulative distribution functions. Expressions to compute the energy density, energy available in the wind spectra in a time period and the energy received by turbine have been developed. A method to identify the most frequent wind speed and velocity that carries maximum amount of energy with it, is also discussed. The analysis of wind energy potential of a eight sites in Kerala, India, adopting this procedure is presented. The performance of three wind turbines differing in their working velocity band, at these sites are compared. The effect of cut-in and cut-out wind speeds on wind turbine performance are also analyzed.  相似文献   

13.
A technical and economic assessment has been made of the generation of electricity using wind turbines at one of the most promising wind sites in Egypt: Hurghada. In this paper, we used wind data recorded over 23 years for this site. The WASP program was used to calculate the values of wind speed frequency for the station, their seasonally values have been estimated and compared with measured data.Weibull parameters and the power law coefficient (n) for all seasons at different heights (10–70 m) has been estimated and used to describe the distribution and behavior of seasonal wind speed and their frequencies at Hurghada. The monthly and annual values of wind potential at a height of 70 m were obtained by extrapolation of the 10 m data from the results of our previous article [Ahmed Shata AS, Hanitsch R. The potential of electricity generation on the east coast of Red Sea in Egypt. Renew Energy 2006;31:1597–615] using the power law.Also, the monthly plant load factor (PLF) has been estimated, which is used to determine the expected annual energy output of a wind energy conversion system (WECS).Variation of annual capacity factor with rated wind speed for 10 different wind turbines has been studied. The lower the rated speed for the WECS of the same height, the higher will be the capacity factor values. The expected electrical energy cost of kWh produced by the wind turbine (Repower MM82) with a capacity of 2 MW considered for Hurghada station was found to be less than 1.5 € cent/kWh.  相似文献   

14.
The electrical energy production and reliability benefits of a wind energy conversion system (WECS) at a specific site depend on many factors, including the statistical characteristics of the site wind speed and the design characteristics of the wind turbine generator (WTG) itself, particularly the cut-in, rated and cut-out wind speed parameters. In general, the higher the degree of the wind site matching with a WECS is, the more are the energy and reliability benefits. An electrical energy production and reliability benefit index designated as the Equivalent Capacity Ratio (ECR) is introduced in this paper. This index can be used to indicate the electrical energy production, the annual equivalent utilization time and the credit of a WECS, and quantify the degree of wind site matching with a WECS. The equivalent capacity of a WECS is modeled as the expected value of the power output random variable with the probability density function of the site wind speed. The analytical formulation of the ECR is based on a mathematical derivation with high accuracy. Twelve WTG types and two test systems are used to demonstrate the effectiveness of the proposed model. The results show that the ECR provides a useful index for a WTG to evaluate the energy production and the relative reliability performance in a power system, and can be used to assist in the determination of the optimal WTG type for a specific wind site.  相似文献   

15.
In this paper, a wind energy conversion system (WECS) using a grid-connected wound rotor induction machine controlled from the rotor side is compared with both fixed speed and variable speed systems using a cage rotor induction machine. The comparison is done on, the basis of: (1) major hardware components required; (2) operating region; and (3) energy output due to a defined wind function using the characteristics of a practical wind turbine. Although a fixed speed system is more simple and reliable, it severely limits the energy output of a wind turbine. In case of variable speed systems, comparison shows that using a wound rotor induction machine of similar rating can significantly enhance energy capture. This comes about due to the ability to operate with rated torque even at supersynchronous speeds; power is then generated out of the rotor as well as the stator. Moreover, with rotor side control, the voltage rating of the power devices and DC bus capacitor bank is reduced. The size of the line side inductor also decreased. Results are presented to show the substantial advantages of the doubly fed system.  相似文献   

16.
This paper presents a new formulation for the turbine-site matching problem, based on wind speed characteristics at any site, the power performance curve parameters of any pitch-regulated wind turbine, as well as turbine size and tower height. Wind speed at any site is characterized by the 2-parameter Weibull distribution function and the value of ground friction coefficient (α). The power performance curve is characterized by the cut-in, rated, and cut-out speeds and the rated power. The new Turbine-Site Matching Index (TSMI) is derived based on a generic formulation for Capacity Factor (CF), which includes the effect of turbine tower height (h). Using the CF as a basis for turbine-site matching produces results that are biased towards higher towers with no considerations for the associated costs. The proposed TSMI includes the effects of turbine size and tower height on the Initial Capital Cost (ICC) of wind turbines. The effectiveness and the applicability of the proposed TSMI are illustrated using five case studies. In general, for each turbine, there exists an optimal tower height, at which the value of the TSMI is at its maximum. The results reveal that higher tower heights are not always desirable for optimality.  相似文献   

17.
According to wind-climatic requirement of wind farms wind speed should exceed the so called cut-in speed. If this inequality is realized then regarding the wind-climatic features of Hungary the following conditions may occur: the wind turbine is operating with high probability, energy is generated; it is working in a regulated mode with low probability; it is not working with very low probability. Therefore in terms of continuous energy production by wind one question arises: are there any temporal and/or orographic shifts in different heights compared to the wind-climatic condition mentioned above. In this paper this question is analyzed on the basis of seven Hungarian meteorological stations that have hourly measured wind speed data considering the period between 1991 and 2000. The probability of wind speeds exceeding 3 m/s, statistics of wind speed intervals higher and lower than 3 m/s and statistics of average hourly wind speed intervals higher than 3 m/s were analyzed at the heights of 10, 30 and 60 m. A statistical parameter that is proportional to the average specific wind power of a day in a time period was defined and, its connection to the average length of those intervals that have higher or equal hourly average wind speeds more than 3 m/s in a given month was investigated. With the help of such parameters the value of monthly average specific wind power can be estimated.  相似文献   

18.
C. G. Justus 《Solar Energy》1978,20(5):379-386
The performance characteristics have been simulated for large dispersed arrays of 500–1500 kW wind turbines producing power and feeding it directly into the New England or Central U.S. utility distribution grids. These studies, based on design power performance curves, indicate that in good wind environments the 500 kW generators can average (on an annual basis) up to 240 kW mean power output, and the 1500 kW generators can average up to 350 kW mean power output. Higher mean power output (averaging up to 470 kW) is indicated, however from a hypothetical 1125 kW rated power unit designed to operate at wind speeds near those observed throughout the study area, rather than the higher design operating wind speed of the 1500 kW unit. The beneficial effect of operating large disperse arrays of wind turbines is that available power output can be increased—if winds are not blowing over one part of the array, chances are they will over some other part of the array. These studies indicate that wind power availability levels of 200 kW per 1125 kW generator were 77–93 per cent, depending on season. Reasonably steady high wind power in winter and high afternoon peak wind power in summer (corresponding to peak air conditioning load) means that significant peak load displacement can be achieved without the use of storage.  相似文献   

19.
Egypt is one of the Red Sea and Mediterranean countries having windy enough areas, in particular along the coasts. The coastal location Ras Ghareb on the Red Sea has been investigated in order to know the wind power density available for electricity generation. To account for the wind potential variations with height, a new simple estimating procedure was introduced. This study has explicitly demonstrated the presence of high wind power density nearly 900 kW/m2 per year at 100 m of altitude for this region. Indeed, the seasonal wind powers available are comparable to and sometimes higher than the power density in many European cities for wind electricity applications like Vindeby (Denmark) and also America.New technical analysis for wind turbine characteristics have been made using three types of commercial wind turbines possessing the same rotor diameter and rated power to choice the best wind machine suitable for Ras Ghareb station. As per the decreasing the cut-in wind speed for the wind turbine used, the availability factor increases for a given generator. That it could produce more energy output throughout the year for the location.The aim of this research, was to predict the electrical energy production with the cost analysis of a wind farm 150 MW total power installed at Ras Ghareb area using 100 wind turbines model (Repower MD 77) with 1.5 MW rated power. Additionally, this paper developed the methodology for estimating the price of each kWh electricity from the wind farms. Results show that this wind park will produce maximum energy of 716 GWh/year. The expected specific cost equal to 1.5 € cent/kWh is still less than and very competitive price with that produced from the wind farms in Great Britain and Germany and at the international markets of wind power. The important result derived from this study encourages several wind parks with hundreds of megawatts can be constructed at Ras Ghareb region.  相似文献   

20.
Matthew A. Lackner 《风能》2013,16(3):435-444
This paper investigates the loads on offshore floating wind turbines and a new control method that can be used to reduce these loads. In this variable power collective pitch control method, the rated generator speed, which is the set point that the collective pitch control attempts to drive the actual generator speed towards, is no longer a constant value but instead is a variable that depends on the platform pitch velocity. At a basic physical level, this controller achieves the following: as the rotor of a floating turbine pitches upwind, the controller adjusts so as to extract more energy from the wind by increasing the rated generator speed and thus damps the motion; as the rotor pitches downwind, less energy is extracted because the controller reduces the rated generator speed and again damps the motion. This method is applied to the NREL 5 MW wind turbine model, in above rated conditions where the platform motion is most problematic. The results indicate significant load reductions on key structural components, at the expense of minor increases in power and speed variability. The loads on the blades and tower are investigated more generally, and simple dynamic models are used to gain insight into the behavior of floating wind turbine systems. It is clear that for this particular design, aerodynamic methods for reducing platform motion and tower loads are likely inadequate to allow for a viable design, so new designs or possibly new control degrees of freedom are needed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号