首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two novel dual‐band microstrip bandpass filters (BPFs) with multiple transmission zeros are proposed in this article. The dual‐band BPFs with second‐order bandpass responses are due to two λ/4 stepped‐impedance resonators (SIRs). Two passbands (center frequency ratio f s/f0 is 2.36) are realized based on the asymmetric SIRs. The transmission zeros near the passbands can be adjusted conveniently using the stopband transmission characteristic of the open/shorted coupled lines. Two planar microstrip dual‐band BPFs (ε r = 2.65, h = 0.5 mm) with four and six transmission zeros are designed and fabricated. High selectivity and good in‐band performances can be achieved in the proposed filters.  相似文献   

2.
In this article, a microstrip bandpass filter with an adjustable bandwidth and predictable transmission zeros is proposed. The proposed filter is implemented by combining two hairpin edge‐coupled resonators with interdigital capacitors. Compared to typical edge‐coupled filters, the proposed filter provides a wider bandwidth resulting from a higher coupling strength between its resonators. To further increase the coupling and consequently the bandwidth, a pair of etched slots in the ground plane is used. By adjusting the geometrical parameters of the interdigital capacitors and etched slots, the bandwidth can be easily adjusted. The filter features two transmission zeros, which are determined by means of the semi‐analytical model developed as part of this work. Furthermore, the proposed filters can be cascaded to obtain a sharper cutoff frequency response. Frequency responses of the filters from measurements are in good agreement with those simulated using IE3D in the 5–9 GHz range. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

3.
This article presents an iterative design technique to calculate the optimal position of transmission zeros in dual‐bandpass filters. In the proposed design technique, the characteristic function of the filter is linearized around the displacement of the transmission zeros. A linear system is then obtained and solved in combination with a damping technique used to guarantee the convergence. Design examples which demonstrate the efficiency of the proposed method are presented and an experimental verification at 4 GHz using open‐loop resonators validates the methodology. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

4.
In this study, a novel high selective UWB band pass filter (BPF) with dual notch band is presented. UWB BPF is realized using stub‐loaded multiple‐mode resonator (MMR). The MMR is constructed by loading a quintuple mode open stub at the centre in an asymmetric tri‐section stepped impedance resonator (ATSSIR). Five modes, including two odd modes and three even modes, placed within UWB band. Two transmission zeros generated by the fractal stub improve the passband selectivity greatly. Two half wavelength long fractal Hilbert resonators are embedded near I/O line to achieve notch bands at 5.1 and 5.9 GHz. Aperture‐backed interdigital coupled‐lines are implemented to improve the coupling. The proposed prototype is fabricated and tested. The measured insertion loss is observed to be within 1.5 dB over the passband. By virtue of two transmission zeros (TZs), on either side of the passband, at 5.1 and 5.9 GHz, respectively, the passband selectivity is achieved with measured roll‐off factor at around 34 dB/octave. The out‐of‐band rejection of the filter is greater than 22 dB up to 18 GHz. The simulated results are in good agreement with the measured responses.  相似文献   

5.
This article presents a computer aided technique to synthesize the filtering function for dual‐band microwave filters with complex source and load impedances. Based on the exchange‐Remez algorithm and the power wave renormalization theory, the characteristic function is first obtained with assigned ripple level at the first passband. Two additional transmission zeros are then optimally allocated to control the ripple level at the second passband. By directly modifying the coupling matrix elements in the first and last stages, a simplified method is also presented when the loading impedance is frequency‐independent. Three synthesized examples with both controlled in‐band and out‐of‐band responses are presented. Finally, LC multi‐coupled circuits are also provided to validate the effectiveness of the proposed method.  相似文献   

6.
A novel compact wideband filter using three‐mode dual‐ring resonator is presented in this article. The resonator is constructed by two quarter wavelength transmission lines and a cascaded half wavelength dual‐ring. Formulae based on even‐ and odd‐mode analysis are derived to analyze the locations of the transmission poles and zeros of the resonator. Due to the transmission zeros in the lower and upper stopbands, the proposed filter exhibits sharp attenuations near the passband as well as very wide stopband. The filter is successfully realized by full wave EM simulation and fabricated. The measured responses of the filter agree well with the design simulation, and show that the fabricated filter has an insertion loss of better than 1.5 dB in the passband and two rejections of greater than 20 dB in the stopbands from 0 to 10GHz.  相似文献   

7.
In this work, we show that a stub‐loaded open‐loop double resonator filter can produce three transmission zeros at finite frequencies close to the passband when designed using our proposed asymmetric feed point topology. We demonstrate that by selecting the length of the stub, the placement of double transmission zeros on either the high side of the passband or the low side of the passband can be selected. This selection can be achieved by using a single design parameter: the stub length. The flexibility in the double zero placement makes these filters particularly advantageous for duplexer designs. Two duplexers are fabricated using the proposed filter topology in a microstrip on a duroid substrate and substrate‐embedded stripline via Low‐Temperature Cofired Ceramic technology (LTCC). The measurements show steep attenuation of approximately 30 dB, close to the filters' passband as well as a compact size down to 0.075λ × 0.17λ.  相似文献   

8.
In this article, a filtering antenna array based on substrate integrated waveguide (SIW) is proposed with quasi‐elliptic gain responses for the first time. Two radiation nulls in the gain responses at two sides of the frequency band edges are designed by applying a novel intercavity bypass coupling scheme. First, by carefully analyzing the bypass coupling between the in‐band and out‐of‐band modes in a single oversized TE103 mode cavity resonator, quasi‐elliptic filtering responses are achieved for a two‐output filter. Afterward, those cavity resonators coupled with the two outputs are replaced by cavity‐backed slot antennas to achieve the proposed filtering cavity‐backed slot antenna array. Only one cavity is required in our design to achieve the two transmission zeros and the function of power divider. As a result, the complexity of the proposed filtering antenna array is reduced. A prototype operating at Ka band is designed, fabricated and measured with a center frequency of 28.5 GHz and fractional bandwidth of 1.25%. Similar characteristics can be observed between the gain response of the proposed filtering antenna and the transmission responses of the two‐output filter. The proposed SIW filtering antenna array has great potential to be integrated into millimeter‐wave transceiver modules. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:191–198, 2016.  相似文献   

9.
In this article, a wideband filtering power divider with good in‐band and out‐of‐band isolations is designed based on a hybrid Wilkinson and Gysel structure. To achieve a good in‐band response, two additional in‐band transmission poles can be introduced by installing the coupled‐line structures at each port. By mounting a stepped impedance open stub at the input port, two transmission zeros are generated near the passband to improve the passband skirt. Furthermore, the out‐of‐band rejection and isolation are achieved by the other two transmission zeros, which are produced by the open stub and the three coupled‐line sections mentioned above. Additionally, a good in‐band isolation is realized by the isolation resistor between output ports. For the demonstration, a wideband filtering power divider centered at 1.5 GHz with a 56% fractional bandwidth and 20‐dB isolation is designed and fabricated. The simulated and measured results are in good agreement with each other.  相似文献   

10.
An effective technique to improve the stop‐band frequency response of direct‐coupled resonators in substrate‐integrated waveguide (SIW) technology is introduced. Regular inductive‐iris filters in SIW technology are supplemented with H‐plane frequency‐dependent inverters which not only create transmission zeros but also serve as the proper impedance inverter. A synthesis technique is introduced to prescribe transmission zeros at finite frequencies on either side of the pass band, symmetrically or asymmetrically. Two different topologies of frequency‐dependent inverters for X‐band SIW band pass filters demonstrate that attenuation poles can be created on both side of the passband and significantly improve the filters' stop‐band performences. Measurements confirm the validity of the presented design approach. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:237–242, 2014.  相似文献   

11.
A new tracking controller for discrete‐time Single Input Single Output (SISO) non‐minimum phase (NMP) systems is presented. In the proposed method, after cancelation of poles and cancelable zeros of the system, the controller adds some NMP zeros to compensate the effect of NMP zero (zeros) of the system. As a result, the phase of the overall transfer function will be almost linear and its magnitude approaches unity for all frequencies. The method can be applied even to the systems with complex conjugate NMP zeros. As well, it is applicable to the systems for which the conventional methods cannot properly be used. Furthermore, a generalization of method to continuous‐time systems is another given result. Several examples are provided to illustrate the effectiveness of the method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

12.
A new design method was proposed in this article to insert transmission zeros in the broadband filters. In this method, the coupling line was connected to a certain position on the resonator. And then the coupling strength was adjusted by the connecting position. The open end of the resonator was hung and then the cross‐coupling was introduced to realize transmission zeros. This coupling method could add an adjustable parameter to improve the freedom of design and convenient to insert the transmission zeros. To verify this method, a highly selective coupled‐line microstrip filter with two transmission zeros was designed, fabricated, and measured. The measured results were in good agreement with the simulated ones. The return and insertion losses of the broadband filter were better than 18 and 2 dB, respectively. The relative bandwidth of the filter (FBW) was more than 68%. The rectangular coefficient (30 dB:1 dB) was less than 1.21.  相似文献   

13.
This paper describes the design and evaluation of a highly selective wideband microstrip bandpass filter with a near brick‐shaped transmission response and a very wide stopband characteristic. The proposed filter structure excites multimode resonances that combine to realize a wideband filter response and excited too are transmission zeros that create a highly selective filter with wideband suppression in the upper and lower stopbands. The filter configuration comprises electromagnetically coupled resonators that are stub loaded. The input and output feedlines are interdigitally coupled to the resonators. Measured results confirm the low‐loss and via‐free wideband filter exhibits an elliptical response with a wide stopband with a rejection greater than 30 dB. The selectivity factor and stopband performance of the proposed filter is better than that obtained with the high‐temperature superconductor (HTS) filters. Design of the filter is relatively simple and easy to manufacture using standard PCB technology. There is good correlation between the simulation and measured results. The proposed wideband bandpass filter is suitable for applications in high interference environments and cognitive radio systems.  相似文献   

14.
It is shown that any finite number of plants that belong to certain classes of multi‐input multi‐output systems with no zeros in the region of instability can be simultaneously stabilized using linear, time‐invariant integral‐action controllers. These plants may be stable or unstable and their poles are not restricted; they may also have any number of zeros in the stable region of the complex plane. The classes of systems under consideration include plants with blocking or transmission zeros at infinity. The common controller achieves asymptotic tracking of step‐input references with zero steady‐state error and has a low order transfer‐function. Systematic synthesis methods are presented, and a parametrization of all simultaneously stabilizing controllers with integral‐action is also provided.  相似文献   

15.
The miniaturized dual‐mode tri‐band band‐pass filters (BPF) using crossed‐island patch resonator is proposed in this article. The BPF is mainly formed by a square patch resonator in which a crossed‐island configuration is embedded in the patch. The patch size reduction with 74.4% is achieved. By the perturbation and the alternative inter‐digital coupling, the tri‐band responses are obtained. The proposed filter covers the required bandwidths for WLAN band (2.26–3.11 GHz and 5.02–6.0 GHz) and X‐band (7.58–8.41 GHz) applications. Five transmission zeros are placed between three pass‐bands and resulted in a good isolation. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:457–463, 2014.  相似文献   

16.
Four‐stage stepped‐impedance resonator (FSSIR) is proposed and its resonant characteristics are analyzed in detail. The formulas of the first four resonances are deduced and the optimization techniques are presented on the basis of the impedance ratios. A quad‐band bandpass filter with third‐order filtering response in each passband is synthesized and designed as a demonstration of the application of the proposed FSSIR. Thanks to the cross‐coupling topology and skew‐symmetrical feeding configuration, multiple transmission zeros have been generated out of the passbands. Additionally, the frequency and the couplings of each passband can be flexibly controlled, respectively.  相似文献   

17.
In this paper, a systematic method is proposed for the design of general multivariable controller for complex processes to achieve the goal of fast loop responses with acceptable overshoots and minimum loop interaction while maintaining low complexity of the feedback controller. The design of general transfer function type controller is based on the fundamental relations under decoupling of a multivariable process, and the characterization of the unavoidable time delays and non-minimum phase zeros that are inherent in the decoupled loops. The objective loop transfer functions are then suitably specified to achieve fast loop response taking into account the performance limitation imposed by those non-minimum phase zeros and time delays. The ideal controller is then obtained which is in general a complicated irrational transfer matrix, for which model reduction with recursive least squares is applied in the frequency domain to obtain a much simpler transfer matrix with its elements in the form of rational transfer function plus delay. Simulations show that very satisfactory control performance is achieved.  相似文献   

18.
In this article, a balanced filtering power divider (FPD) that allows for operational agility of the bandwidth (BW) is presented. The differential‐mode power dividing and high common‐mode (CM) suppression can be realized by microstrip‐to‐slotline transition. Two slotline open stubs with different lengths are added in shunt to the main slotline for the transition, which can not only introduce transmission poles for extending and controlling transition BW, but also generate two extra transmission zeros (TZs) near to the passband edges, featuring good filtering response. The two transmission poles can be independently tunable by loading varactors to the open ends of slotline stubs and two TZs will be changed accordingly so that the filtering passband BW is electrically tunable. To verify the theoretical prediction, a prototype of tunable balanced FPD is fabricated and measured. The measured results show that the 3‐dB fractional bandwidth (FBW) of the passband varies from 5.6% to 12.6%, meaning more than a double tuning range for the FBW, and the CM suppression is better than 40 dB across the frequency band of interest.  相似文献   

19.
E.J Davison  S.H Wang   《Automatica》1974,10(6):643-658
A new definition of transmission zeros for a linear, multivariable, time-invariant system is made which is shown to be equivalent to previous definitions. Based on this new definition of transmission zeros, new properties of transmission zeros of a system are then obtained; in particular, it is shown that a system with an unequal number of inputs and outputs almost always has no transmission zeros and that a system with an equal number of inputs and outputs almost always has either n−1 or n transmission zeros, where n is the order of the system; transmission zeros of cascade systems are then studied, and it is shown how the transmission zeros of a system relate to the poles of a closed loop system subject to high gain output feedback. An application of transmission zeros to the servomechanism problem is also included. A fast, efficient, numerically stable algorithm is then obtained which enables the transmission zeros of high order multivariable systems to be readily obtained. Some numerical examples for a 9th order system are given to illustrate the algorithm.  相似文献   

20.
An ultra‐wideband compact bandpass filter (BPF) with configurable stopband by tuning transmission zeroes is proposed in this paper. The ultra‐wideband bandpass response is based on a diamond‐shape resonator consisting of a pair of broadside coupled diamond‐shape microstrip lines, within which a diamond shape defected ground structure (DGS) is etched in the middle. Flexible transmission zeros realized by open and short stubs can be easily adjusted to improve band selectivity and harmonic suppression. Measurement result shows that the dedicated device has a 3 dB fractional bandwidth of 148% (0.94‐6.36 GHz) with 20 dB rejection stopband from 6.87 to 9.7 GHz (77.5%) which agrees good with the simulate performance. The overall size of the proposed BPF is 0.27 λg × 0.23 λg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号