首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Hydrogen refuelling stations are important for achieving sustainable hydrogen economy in low carbon transport and fuel cell electric vehicles. The solution presented in this paper provides us with a technology for producing carbon dioxide free hydrogen, which is an approach that goes beyond the existing large-scale hydrogen production technologies that use fossil fuel reforming. Hence, the main goal of this work was to design a hydrogen refuelling station to secure the autonomy of a hydrogen powered bicycle. The bicycle hydrogen system is equipped with a proton exchange membrane fuel cell stack of 300 W, a DC/DC converter, and a metal hydride storage tank of 350 NL of hydrogen. The hydrogen power system was made of readily available commercial components. The hydrogen station was designed as an off-grid system in which the installed proton exchange membrane electrolyzer is supplied with electric energy by direct conversion using photovoltaic cells. With the hydrogen flow rate of 2000 cc min−1 the hydrogen station is expected to supply at least 5 bicycles to be used in 20 km long city tourist routes.  相似文献   

2.
The technical feasibility of a small-scale ‘proton battery’ with a carbon-based electrode is demonstrated for the first time. The proton battery is one among many potential contributors towards meeting the gargantuan demand for electrical energy storage that will arise with the global shift to zero greenhouse emission, but inherently variable, renewable energy sources. Essentially a proton battery is a reversible PEM fuel cell with an integrated solid-state electrode for storing hydrogen in atomic form, rather than as molecular gaseous hydrogen in an external cylinder. It is thus a hybrid between a hydrogen-fuel-cell and battery-based system, combining advantages of both system types. In principle a proton battery can have a roundtrip energy efficiency comparable to a lithium ion battery. The experimental results reported here show that a small proton battery (active area 5.5 cm2) with a porous activated carbon electrode made from phenolic resin and 10 wt% PTFE binder was able to store in electrolysis (charge) mode very nearly 1 wt% hydrogen, and release on discharge 0.8 wt% in fuel cell (electricity supply) mode. A significant design innovation is the use of a small volume of liquid acid within the porous electrode to conduct protons (as hydronium) to and from the nafion membrane of the reversible cell. Hydrogen gas evolution during charging of the activated carbon electrode was found to be very low until a voltage of around 1.8 V was reached. Future work is being directed towards increasing current densities during charging and discharging, multiple cycle testing, and gaining an improved understanding of the reactions between hydronium and carbon surfaces.  相似文献   

3.
As proton exchange membrane fuel cell technology advances, the need for hydrogen storage intensifies. Metal hydride alloys offer one potential solution. However, for metal hydride tanks to become a viable hydrogen storage option, the dynamic performance of practical tank geometries and configurations must be understood and incorporated into fuel cell system analyses. A dynamic, axially-symmetric, multi-nodal metal hydride tank model has been created in Matlab–Simulink® as an initial means of providing insight and analysis capabilities for the dynamic performance of commercially available metal hydride systems. Following the original work of Mayer et al. [Mayer U, Groll M, Supper W. Heat and mass transfer in metal hydride reaction beds: experimental and theoretical results. Journal of the Less-Common Metals 1987;131:235–44], this model employs first principles heat transfer and fluid flow mechanisms together with empirically derived reaction kinetics. Energy and mass balances are solved in cylindrical polar coordinates for a cylindrically shaped tank. The model tank temperature, heat release, and storage volume have been correlated to an actual metal hydride tank for static and transient absorption and desorption processes. A sensitivity analysis of the model was accomplished to identify governing physics and to identify techniques to lessen the computational burden for ease of use in a larger system model. The sensitivity analysis reveals the basis and justification for model simplifications that are selected. Results show that the detailed and simplified models both well predict observed stand-alone metal hydride tank dynamics, and an example of a reversible fuel cell system model incorporating each tank demonstrates the need for model simplification.  相似文献   

4.
This work investigates on the performance of a hybrid energy storage system made of a metal hydride tank for hydrogen storage and a lithium-ion battery pack, specifically conceived to replace the conventional battery pack in a plug-in fuel cell electric scooter. The concept behind this solution is to take advantage of the endothermic hydrogen desorption in metal hydrides to provide cooling to the battery pack during operation.The analysis is conducted numerically by means of a finite element model developed in order to assess the thermal management capabilities of the proposed solution under realistic operating conditions.The results show that the hybrid energy storage system is effectively capable of passively controlling the temperature of the battery pack, while enhancing at the same time the on-board storage energy density. The maximum temperature rise experienced by the battery pack is around 12 °C when the thermal management is provided by the hydrogen desorption in metal hydrides, against a value above 30 °C obtained for the same case without thermal management. Moreover, the hybrid energy storage system provides the 16% of the total mass of hydrogen requested by the fuel cell stack during operation, which corresponds to a significant enhancement of the hydrogen storage capability on-board of the vehicle.  相似文献   

5.
A dynamic model of a discrete reversible fuel cell (RFC) system has been developed in a Matlab Simulink® environment. The model incorporates first principles dynamic component models of a proton exchange membrane (PEM) fuel cell, a PEM electrolyzer, a metal hydride hydrogen storage tank, and a cooling system radiator, as well as empirical models of balance of plant components. Dynamic simulations show unique charging and discharging control issues and highlight factors contributing to overall system efficiency.  相似文献   

6.
Nanoporous carbon is proposed as reversible hydrogen electrode for an electrochemical cell operating in aqueous KOH solution. Hydrogen is stored by water electroreduction on the carbon electrode during the charging step, while nickel gauze is used as auxiliary positive electrode. Then, electrical energy is harvested by using the charged electrode as anode associated to an air cathode. A specific capacity of 390–450 Ah kg−1 of carbon material was measured. The system is technically more simple than a traditional fuel cell, since it does not require any hydrogen reservoir, membrane and noble metal for the hydrogen electrode.  相似文献   

7.
A novel electrochemical scheme to convert a stand-alone supply of aqueous hydrogen peroxide into a fuel cell-ready stream of hydrogen gas plus aqueous hydrogen peroxide is described. The electrochemical cell, consisting of a solid base and solid acid electrocatalyst, together with a proton exchange membrane, comprise the system that converts aqueous hydrogen peroxide into separate gas streams of oxygen and hydrogen. Aqueous hydrogen peroxide is contained in the anode compartment only and exists in the region where oxygen gas is formed, whereas the cathode compartment is where hydrogen gas is generated and therefore exists in a reduced state. A near zero theoretical over-potential can be achieved by the choice of basicity and acidity of the electrode materials. The primary cost of the electrochemical cell is electrode construction and the aqueous hydrogen peroxide energy storage compound. Additional research effort is required to experimentally validate the concept and explore the full economic impact should initial studies, based on the design presented here, prove promising.  相似文献   

8.
Thermal design analysis of a 1-L cryogenic liquid hydrogen storage tank without vacuum insulation for a small unmanned aerial vehicle was carried out in the present study. To prevent excess boil-off of cryogenic liquid hydrogen, the storage tank consisted of a 1-L inner vessel, an outer vessel, insulation layers and a vapor-cooled shield. For a cryogenic storage tank considered in this study, the appropriate heat inleak was allowed to supply the boil-off gas hydrogen to a proton electrolyte membrane fuel cell as fuel. In an effort to accommodate the hydrogen mass flow rate required by the fuel cell and to minimize the storage tank volume, a thermal analysis for various insulation materials was implemented here and their insulation performances were compared. The present thermal analysis showed that the Aerogel thermal insulations provided outstanding performance at the non-vacuum atmospheric pressure condition. With the Aerogel insulation, the tank volume for storing 1-L liquid hydrogen at 20 K could be designed within a storage tank volume of 7.2 L. In addition, it was noted that the exhaust temperature of boil-off hydrogen gas was mainly affected by the location of a vapor-cooled shield as well as thermal conductivity of insulation materials.  相似文献   

9.
Renewable energy has rapidly advanced in the global energy system, triggering the visible development of energy storage technologies in recent decades. Among them, the electricity-fuel-electricity approach is an effective way for the storage and utilization of renewable power. In this work, a bifunctional electrochemical flow cell integrating both ammonia production and electricity generation modes is developed for renewable energy conversion and storage. Ammonia, a hydrogen carrier having a high hydrogen content of 17.6 wt %, is relatively easier to convert to liquid phase for large-scale storage. The long-distance ammonia transport can reliably depend on the established infrastructure. In addition, as a carbon-free fuel beneficial for achieving the goal of carbon-neutrality, ammonia is considered as an environmentally benign and cost-effective mediator fuel. This flow cell is able to operate via two modes, i.e., an ammonia-production mode for energy storage in the form of ammonia (via nitrogen reduction reaction) and an electricity-generation mode for energy conversion in the form of electricity (via ammonia oxidation reaction). This flow cell is constituted by a PtAu/C-coated nickel-foam electrode for nitrogen and oxygen reduction reactions, a Pt/C-coated nickel-foam electrode for water and ammonia oxidation reactions, and an alkaline anion exchange membrane for charge-carrier migration. Charging this flow cell with the supply of nitrogen results in a Faradaic efficiency of 2.70% and an ammonia production rate as high as 9.34 × 10?10 mol s?1 cm?2 at 23 °C. Moreover, energizing this flow cell with ammonia results in an open-circuit voltage of 0.59 V and a peak power density of 3.31 mW cm?2 at 23 °C. A round-trip efficiency of 25.7% is realized with the constant-electrode mode.  相似文献   

10.
The desorption behavior of a hydrogen storage prototype loaded with AB5H6 hydride, whose equilibrium pressure makes it suitable for both feeding a PEM fuel cell and being charged directly from a low pressure water electrolyzer without need of additional compression, was studied. The nominal 70 L hydrogen storage capacity of the container (T = 20 °C, P = 101.3 kPa) suffices for ca. 2.5 h operation of a 50 W hydrogen/oxygen fuel cell stack. The hydride container is provided with aluminum extended surfaces to enhance heat exchange with the surrounding medium. These surfaces consist of internal disk-shaped metal foils and external axial fins. The characterization of the storage prototype at different hydrogen discharge flow rates was made by monitoring the internal pressure and the temperatures of the external wall and at the center inside the container.  相似文献   

11.
Hydrogen in metal hydrides could be one of the promising energy storage mediums to address the intermittent nature of renewable energy. To convert the hydrogen energy to electricity, the storage system has to be coupled with a fuel cells system. Hence, it is important to design a hydrogen storage system that meets the operating requirements for a fuel cell system. In this work, the effects of partial substitution of both cerium and aluminum on the hydrogenation properties of La(0.65−x)CexCa1.03Mg1.32Ni(9−y)Aly alloys were investigated simultaneously using factorial design. Both Ce and Al additions greatly improved the reversibility of hydrogen storage capacity. However, the maximum hydrogen storage capacity and absorption kinetics can be reduced by the additions. As Ce and Al gave opposite effects on the absorption and desorption plateaus, they could be used to tune the properties of the alloys to the desired operating conditions for fuel cell applications.  相似文献   

12.
This study examines the practical prospects and benefits for using interstitial metal hydride hydrogen storage in “unsupported” fuel cell mobile construction equipment and aviation GSE applications. An engineering design and performance study is reported of a fuel cell mobile light tower that incorporates a 5 kW Altergy Systems fuel cell, Grote Trilliant LED lighting and storage of hydrogen in the Ovonic interstitial metal hydride alloy OV679. The metal hydride hydrogen light tower (mhH2LT) system is compared directly to its analog employing high-pressure hydrogen storage (H2LT) and to a comparable diesel-fueled light tower with regard to size, performance, delivered energy density and emissions. Our analysis indicates that the 5 kW proton-exchange-membrane (PEM) fuel cell provides sufficient waste heat to supply the desorption enthalpy needed for the hydride material to release the required hydrogen. Hydrogen refueling of the mhH2LT is possible even without external sources of cooling water by making use of thermal management hardware already installed on the PEM fuel cell. In such “unsupported” cases, refueling times of ∼3–8 h can be achieved, depending on the temperature of the ambient air. Shorter refueling times (∼20 min) are possible if an external source of chilled water is available for metal hydride bed cooling during rapid hydrogen refueling. Overall, the analysis shows that it is technically feasible and in some aspects beneficial to use metal hydride hydrogen storage in portable fuel cell mobile lighting equipment deployed in remote areas. The cost of the metal hydride storage technology needs to be reduced if it is to be commercially viable in the replacement of common construction equipment or mobile generators with fuel cells.  相似文献   

13.
A fuel cell using an enzymatic biocathode operating in a gas phase mode is reported. The electrode was prepared using a three-dimensional conductive electrode matrix. An enzyme solution containing laccase and a mediator was distributed into a hydrophilic matrix of carbon felt fibers creating a porous gas-flowing electrode. A Pt-based gas diffusion electrode served as the anode. A maximum power density of 9.4 W m−2 (2.9 kW m−3) was obtained with 15 U of enzyme cm−2, with hydrogen as the fuel. Power density was found to be a function of the enzyme loading, air flow rate, volume of the liquid phase and the humidity of the air stream. The ability to use methanol and ethanol as vapors in gas phase was also shown. The introduction of three-dimensionality into the electrode architecture and operation of the fuel cell in a gas phase mode to supply the fuel and the oxidant demonstrates an avenue for improving the power density of EFCs.  相似文献   

14.
Catalyzed hydrolysis of sodium borohydride (SBH) is a promising method for the hydrogen supply of fuel cells. In this study a system for controlled production of hydrogen from aqueous sodium borohydride (SBH) solutions has been designed and built. This simple and low cost system operates under controlled addition of stabilized SBH solutions (fuel solutions) to a supported CoB catalyst. The system works at constant temperature delivering hydrogen at 1 L min−1 constant rate to match a 60-W polymer electrolyte membrane fuel cell (PEMFC). For optimization of the system, several experimental conditions were changed and their effect was investigated. A simple model based only on thermodynamic considerations was proposed to optimize system parameters at constant temperature and hydrogen evolution rate. It was found that, for a given SBH concentration, the use of the adequate fuel addition rate can maximize the total conversion and therefore the gravimetric storage capacity. The hydrogen storage capacity was as high as 3.5 wt% for 19 wt% SBH solution at 90% fuel conversion and an operation temperature of 60 °C. It has been demonstrated that these optimized values can also be achieved for a wide range of hydrogen generation rates. Studies on the durability of the catalyst showed that a regeneration step is needed to restore the catalytic activity before reusing.  相似文献   

15.
Being produced from renewable energy, hydrogen is one of the most efficient energy carriers of the future. Using metal alloys, hydrogen can be stored and transported at a low cost, in a safe and effective manner. However, most metals react with hydrogen to form a compound called metal hydride (MH). This reaction is an exothermic process, and as a result releases heat. With sufficient heat supply, hydrogen can be released from the as-formed metal hydride. In this work, we propose an integrated power system of a proton exchange membrane fuel cell (PEMFC) together with a hydride tank designed for vehicle use. We investigate different aspects for developing metal hydride tanks and their integration in the PEMFC, using water as the thermal fluid and a FeTi intermetallic compound as the hydrogen storage material. Ground truth simulations show that the annular metal hydride tank meets the hydrogen requirements of the fuel cell, but to the detriment of the operating temperature of the fuel cell (FC).  相似文献   

16.
We describe a metal hydride (MH) hydrogen storage tank for light fuel cell vehicle application developed at HySA Systems. A multi-component AB2-type hydrogen storage alloy was produced by vacuum induction melting (10 kg per a load) at our industrial-scale facility. The MH alloy has acceptable H sorption performance, including reversible H storage capacity up to ∼170 NL/kg (1.5 wt% H). The cassette-type MH tank was made up of 2 cylindrical aluminium canisters with transversal internal copper fins and external aluminium fins for improving the heat exchange between the heating medium and the MH tank. Heat supply and removal was provided from the outside using air at T = 15–25 °C. The MH tank was tested at the conditions of natural or forced (velocity ∼2 m/s) air convection. The tests included H2 charge of the tank at P = 15–40 bar and its discharge at P = 1 bar. The tank in the H2 discharge mode was also tested together with open cathode low-temperature proton exchange membrane fuel cell (LT PEMFC).  相似文献   

17.
In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and coupled to a separately characterized sodium alanate storage tank (300 g material). The coupled system is studied in steady state for 20 min operation and all relevant heat flows are determined. Even though heat losses at that specific power and temperature level cannot be completely avoided, it is demonstrated that the amount of heat transferred from the fuel cell stack to the cooling liquid circuit is sufficient to desorb the necessary amount of hydrogen from the storage tank. Furthermore, it is shown that the reaction rate of the sodium alanate at 160 °C and 1.7 bar is adequate to provide the hydrogen to the fuel cell stack. Based on these experimental investigations, a set of recommendations is given for the future design and layout of similar coupled systems.  相似文献   

18.
Anode water management is critical for the efficient operation of proton exchange membrane fuel cells with a dead-ended anode. To clarify the mass transfer phenomenon in the anode flow channel under the dead-ended anode mode, and reveal the influence mechanism of pulsating flow on water management, a three-dimensional, two-phase, non-isothermal transient model is established in this study. The water content and species distribution in different layers are analyzed, and the internal relationship between water transport behavior and output performance of the proton exchange membrane fuel cell under different operating conditions is explored. The simulation results show that the output performance of the proton exchange membrane fuel cell in dead-ended anode mode is directly related to the gas diffusion layer's water saturation and the hydrogen mass transfer. Furthermore, pulsating flow can effectively suppress the back diffusion of water, and improve the mass transfer rate of hydrogen. Consequently, the water management and the operational stability of the proton exchange membrane fuel cell are significantly improved. The research results of this paper have important guiding significance for improving the water and gas management of fuel cells.  相似文献   

19.
The electrochemical performance of a state-of-the-art molten carbonate cell was investigated in both fuel cell (MCFC) and electrolysis cell (MCEC) modes by using polarization curves and electrochemical impedance spectroscopy (EIS). The results show that it is feasible to run a reversible molten carbonate fuel cell and that the cell actually exhibits lower polarization in the MCEC mode, at least for the short-term tests undertaken in this study. The Ni hydrogen electrode and the NiO oxygen electrode were also studied in fuel cell and electrolysis cell modes under different operating conditions, including temperatures and gas compositions. The polarization of the Ni hydrogen electrode turned out to be slightly higher in the electrolysis cell mode than in the fuel cell mode at all operating temperatures and water contents. This was probably due to the slightly larger mass-transfer polarization rather than to charge-transfer polarization according to the impedance results. The CO2 content has an important effect on the Ni electrode in electrolysis cell mode. Increasing the CO2 content the Ni electrode exhibits slightly lower polarization in the electrolysis cell mode. The NiO oxygen electrode shows lower polarization loss in the electrolysis cell mode than in the fuel cell mode in the temperature range of 600–675 °C. The impedance showed that both charge-transfer and mass-transfer polarization of the NiO electrode are lower in the electrolysis cell than in the fuel cell mode.  相似文献   

20.
This paper describes a technical feasibility study of on-board metal hydride storage systems. The main advantages of these systems would be that of being able to replace counterweights with the weight of the storage system and using the heat emissions of fuel cells for energy, making forklifts a perfect use case. The main challenge is designing a system that supplies the required energy for a sufficiently long period. A first draft was set up and analyzed to provide a forklift based on a fuel cell with hydrogen from HydralloyC5 or FeTiMn. The primary design parameter was the required amount of stored hydrogen, which should provide energy equal to the energy capacity of a battery in an electric vehicle. To account for highly dynamic system requirements, the reactor design was optimized such that the storage was charged in a short time. Additionally, we investigated a system in which a fixed amount of hydrogen energy was required. For this purpose, we used a validated simulation model for the design concepts of metal hydride storage systems. The model includes all relevant terms and parameters to describe processes inside the system's particular reactions and the thermal conduction due to heat exchangers. We introduce an embedded fuel cell model to calculate the demand for hydrogen for a given power level. The resulting calculations provide the required time for charging or a full charge depending on the tank's diameter and, therefore, the necessary number of tanks. We conclude that the desired hydrogen supply times are given for some of the use cases. Accordingly, the simulated results suggest that using a metal hydride system could be highly practical in forklifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号