首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We modeled a miscible polymer-monomer system with a sharp transition zone separating the two fluids to determine if convection analogous to Marangoni convection in immiscible fluids could occur because of thermal and concentration gradients. We considered three cases: with a temperature gradient along the transition zone, with a variable transition zone width, and one with a gradient in the conversion of polymerization. Using the Navier-Stokes equations with an additional term, the Korteweg stress term arising from non-local interactions in the fluid, we demonstrated with realistic parameters that measurable fluid flow would result in the absence of buoyancy-driven convection for all three cases. To avoid buoyancy-driven convection, the experiment would have to be performed in microgravity.  相似文献   

2.
We modeled a miscible polymer-monomer system with a sharp transition zone separating the two fluids to determine if convection analogous to Marangoni convection in immiscible fluids could occur because of thermal and concentration gradients. We considered three cases: with a temperature gradient along the transition zone, with a variable transition zone width, and one with a gradient in the conversion of polymerization. Using the Navier–Stokes equations with an additional term, the Korteweg stress term arising from non-local interactions in the fluid, we demonstrated with realistic parameters that measurable fluid flow would result in the absence of buoyancy-driven convection for all three cases. We show that even if the Korteweg stress is not a function of temperature, the increase in the diffusion coefficient with temperature can result in convection because a gradient in the transition zone width develops. We also examine the effects of a polymer viscosity that is not only a function of concentration but also temperature. We demonstrate that a constant flux of heat, as would be realistic for a heating element in contact with the side of the reactor, would produce a greater flow than a linear thermal gradient parallel to the transition zone. We demonstrate that qualitatively different flow patterns can be realized by using unusual initial conditions that could be realized with different masks for the photopolymerization. We also demonstrate that the volume change during polymerization and caused by side heating could not cause significant fluid flow that would confound the observation of Korteweg-stress induced flows. To avoid buoyancy-driven convection, the experiment would have to be performed in microgravity.  相似文献   

3.
Glass dispersion systems were examined using differential scanning calorimetry. The addition of a crystalline additive to a glassy vehicle resulted in a reduction of the vehicle's glass transition temperature. Mixtures of glassy materials were immiscible, partially miscible, or completely miscible. The results can be explained using the concept of miscibility among liquids. By combining two miscible glasses in the proper ratio, it was possible to obtain greater physical stability than with either of its glassy components. This was demonstrated with a 1:1 mixture of citric acid and acetaminophen which showed no changes in its thermogram after seven weeks of storage at 23°C. The glass transition of this mixture is about 18° C.  相似文献   

4.
A capillary tube is widely used as an expansion device for small refrigeration cycles. In a practical refrigeration cycle, some amount of refrigeration oil is discharged from a compressor and refrigerant/oil mixture flows through the capillary tube. This study investigated experimentally the influence of mixing of the refrigeration oil with the refrigerant on the flow through the capillary tube. The experiments are carried out with not only a miscible combination of refrigerant and oil but also an immiscible combination. In both cases, the mass flow rate through the capillary tube and temperature and pressure distributions along the tube are measured under several conditions of subcooled degree and oil concentration. In the case of miscible combination, the mass flow rate of refrigerant decreases with increasing the oil concentration because the viscosity of liquid phase increases by the mixing of viscous oil. Even in the case of the immiscible combination, the oil droplet is so small that it mixes homogeneously in the liquid phase in the capillary tube and the refrigerant mass flow rate decreases by the mixing of immiscible oil. There is no significant influence of the oil concentration on the underpressure, which means pressure difference between saturation pressure and flash inception pressure, in both miscible and immiscible combinations.  相似文献   

5.
The thermophoretic deposition of aerosol particles in laminar mixed-convection flow in a channel with two heated built-in square cylinders was studied numerically. The objective of this research was to study the effect of free convection and the distance between cylinders, on deposition of particles. Continuity, momentum and energy equations were solved to determine the velocity and temperature profiles in the channel. The particle trajectories were evaluated by solving the Lagrangian equation of motion that included the drag, Brownian diffusion and thermophoresis forces. It was found that the temperature gradient near the channel wall, in mixed flow regime, is higher than the temperature gradient in forced convection regime. Increasing the temperature gradient increased the effect of thermophoresis on deposition of particles. It was observed that the deposition was increased with the Richardson number. The distance between cylinders is a parameter that influences the deposition of particles. Temperature gradient decreases with increasing the cylinders’ distance; on the other hand, the length of the high temperature gradient zone, which is located in the region between the cylinders where the most deposition occurs, will be increased. These two opposite phenomena cause the fact that at a distance which is four times longer than the cylinders’ length, a maximum cumulative deposition fraction occurs. It was eventually concluded that the thermophoresis and the inertial impaction are dominant deposition mechanisms of particles on the channel wall.  相似文献   

6.
Glass-forming liquids, polymer solutions, and biofluids have additional inertial and elastic macroscopic degrees of freedom that are related to the elasticity of the molecular coils and affect the determination of the structural dynamical parameters. In this work, we propose a new approach for the direct evaluation of the fundamental material parameters (viscosity, fragility, glass transition temperature) of a viscoelastic liquid in a capillary flow inside a microfluidic device. The proposed technique substantially reduces the complexity of the theoretical analysis and provides an evaluation of the most relevant functional parameters of the fluid dynamics. Moreover, the approach allows the investigation of localization phenomena in geometrical confined systems, such as those required in miniaturized devices.  相似文献   

7.
Measurements of the diffusion coefficient of two miscible liquids are reported. The liquids are various combinations of pure silicone oils and those to which small amounts of solvents are added to control the difference in density between the fluids. The liquids were placed in a quartz cell such that the interface is initially horizontal. As the fluids diffuse, the profile of the index of refraction near the interface is time dependent and is related to the local concentration of the diffusing fluids. The concentration gradient profile was measured by a shearing interferometer incorporating a Wollaston prism, as well as Wiener's method. In the latter technique, a 45° light sheet was passed through the test cell, and the local deflection of the light beam was measured. The average diffusion coefficient was obtained by analysis of the measured concentration gradient profile, assuming that the diffusion process is one-dimensional and is characterized by a constant value of the diffusion coefficient.  相似文献   

8.
Deming's method of least squares is introduced to make an accurate kinematic viscosity estimation for a series of 13 standard-viscosity liquids at any desired temperature. The empirical ASTM kinematic viscosity-temperature equation is represented in the form loglog(v+c)=a–b log T, where v (in mm2. s–1) is the kinematic viscosity at temperature T (in K), a and b are the constants for a given liquid, and c has a variable value. In the present application, however, c is assumed to have a constant value for each standard-viscosity liquid, as do a and b in the ASTM equation. This assumption has since been verified experimentally for all standard-viscosity liquids. The kinematic viscosities for the 13 standard-viscosity liquids have been measured with a high accuracy in the temperature range of 20–40°C using a series of the NRLM capillary master viscometers with an automatic flow time detection system. The deviations between measured and estimated kinematic viscosities were less than ±0.04% for the 10 standard-viscosity liquids JS2.5 to JS2000 and ±0.11% for the 3 standard-viscosity liquids JS15H to JS200H, respectively. From the above investigation, it was revealed that the uncertainty in the present estimation method is less than one-third that in the usual ASTM method.  相似文献   

9.
A common-path interferometer (CPI) system was developed to measure the diffusivity of transparent liquid pairs by real-time visualization of the concentration gradient profile. The CPI is an optical technique that can be used to measure changes in the gradient of the refractive index of transparent materials. The CPI is a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Molecular diffusivity of liquids can be determined by use of physical relations between changes in the optical path length and the liquid phase properties. The data obtained by this interferometer are compared with similar results from other techniques. This demonstrates that the instrument is reliable for measurement of the diffusivity of miscible liquids and allows the system to be compact and robust. It can also be useful for studies in interface dynamics as well as other applications in a low-gravity environment.  相似文献   

10.
A low matrix volume (13%) composite liquid-phase sintered in a temperature gradient showed anomalous behaviour in that the spheroid size did not decrease as predicted with decreasing temperature, and the average spheroid size was larger than expected based on uniform temperature sintering experiments. Furthermore, similar composites with higher matrix volume (20 or 28%) had smaller average spheroid sizes at lower temperatures in the gradient. Copper was injected as a tracer into both presintered and liquid-phase sintered composites to study matrix flow during subsequent sintering treatments. The copper concentration decreased with distance from the hot zone for high volume matrix composites, but in the low volume matrix composites where the volume of solid tungsten spheroids was higher (greater resistance to matrix motion), the copper was distributed almost uniformly throughout the matrix. The spheroid and matrix compositions, densities, surface tensions, and most other properties were the same, whereas only the matrix volumes were different. This anomalous behaviour was attributed to some mechanism aided by capillary action since the smaller distances between spheroids in the low matrix composites increase the capillary forces by about 25%.  相似文献   

11.
The one-dimensional steady-state heat and mass transfer in a two-phase zone of a water-saturated porous medium is studied. The system consists of a sand-water-vapour mixture in a tube that is heated from above and cooled from below. Under certain conditions, a two-phase zone of both vapour and water exists in the middle of the tube. A model problem for the temperature and the liquid saturation profiles within this two-phase zone is formulated by allowing for an explicit temperature dependence for the saturation vapour pressure together with an explicit saturation dependence for the capillary pressure. A boundary-layer analysis is performed on this model in the asymptotic limit of a large vapour-pressure gradient. This asymptotic limit is similar to the large-activation-energy limit commonly used in combustion problems. In this limit, and in the outer region away from any boundary layers, it is shown that the temperature profile is slowly varying and that the corresponding saturation profile agrees very well with that obtained in the previous model of Udell [J. Heat Transfer 105 (1983) p. 485] where strict isothermal conditions were assumed. The condensation and evaporation occurring within the boundary layers near the edges of the two-phase zone is examined. Finally, an iterative method is described that allows the temperature profile in the two-phase zone to be coupled to the temperature profiles in the two single-phase zones consisting of either water or vapour. This allows for the computation of the locations of the edges of the two-phase zone within the tube. Numerical computations are performed with realistic values of the parameters.  相似文献   

12.
Although some patterns of physical behavior are common in the glass transition and in the properties of supercooled liquids and glasses (characteristic viscoelasticity, temperature dependence of viscosity and relaxation times, property evolution through “physical aging”, difficulties in performing equilibrium measurements or simulations, etc.), it is difficult to arrive at a definition of the glass transition which distinguishes it from other phenomena exhibiting similar features. The present paper addresses this problem by defining a dynamical measure of order involving the average “shape” of particle trajectories in supercooled liquids. This dynamic order parameter should provide a measure of “closeness” to the glass transition and some indirect insights into the physical nature of supercooled liquids and glasses. Arguments are given that the proposed dynamic measure of order [“generalized capacity”, C(T)] is related to the temperature-dependent “effective hydrodynamic radius” RH(T) measured in supercooled liquids and model numerical calculations are given to support this view. Some consequences of the intermittent particle motion at low temperatures for stress relaxation are also discussed.  相似文献   

13.
A numerical analysis of the Mathieu-Hill equation describing the time evolution of the amplitudes of capillary waves at the interface between two liquids, the upper moving relative to the denser lower liquid at a time-dependent velocity, is used to show that for certain values of the characteristic physical parameters, the zones of unstable amplitude growth become deformed and overlap to form a single, singly connected instability zone. Pis’ma Zh. Tekh. Fiz. 25, 13–18 (October 26, 1999)  相似文献   

14.
Thermal effects in compressible viscous flow in a capillary   总被引:1,自引:0,他引:1  
The thermal effects for a compressible viscous flow in a capillary have been calculated by solving the equation of energy, where a parabolic profile is assumed for the axial flow velocity. It is shown that, in general, the temperature changes are small (a few millikelvins), consistent with the current assumption of an isothermal flow, except in the case of a critical, i.e., very compressible, fluid where the cooling can be substantial. This effect is demonstrated numerically on the basis of a flow of ethylene in nearly critical circumstances.Paper dedicated to Professor Joseph Kestin.  相似文献   

15.
The paper presents numerical simulations of heat conduction around a circular vertical cylinder immersed in liquids. A finite volume formulation is used, and the numerical analysis is performed in unsteady state with an explicit scheme. The numerical predictions are compared with experiments performed on liquids to find the temperature inside the cylinder, where a thermocouple is located, and at the wall of the insulated coaxial container, where the liquid is poured. The cylinder is immersed vertically. The numerical results are in good agreement with the temperature at the wall of the container. The experimental temperature measurement of the thermocouple located inside the probe is intermediate between the numerical temperatures on the axis and on the surface of the probe. The natural convection phenomenon is evidenced in the experiments, after a certain time from the beginning of heating, in some of the liquids used, except glycerol. Natural convection is not considered in the present numerical simulations, which solve only the heat conduction equation.  相似文献   

16.
Autonomous microfluidic capillary system   总被引:7,自引:0,他引:7  
The transport of minute amounts of liquids using microfluidic systems has opened avenues for higher throughput and parallelization of miniaturized bio/chemical processes combined with a great economy of reagents. In this report, we present a microfluidic capillary system (CS) that autonomously transports aliquots of different liquids in sequence: liquids pipetted into the service port of the CS flow unidirectionally through the various sections of the CS, which comprises a 15-pL reaction chamber, into the capillary pump. A CS can thus be operated by simply delivering the different samples to its service port. The liquid transport concept presented here is advantageous because the pumping and valving functions are integrated into the device by means of capillary phenomena, and it therefore does not require any external power supply or control device. Thus, arrays of CSs can easily be formed by cloning a functional CS. Alternatively, the flow of liquids in CSs can also be interactively tuned if desired by (i) forcing the evaporating of liquid out of the capillary pumps and (ii) by contacting a secondary, removable capillary pump to the embedded ones. We illustrate the possibilities of CSs by conducting a surface immunoassay for a cardiac marker, within 25 min, on an area of 100 x 100 microm2, using 16 sequential filling steps.  相似文献   

17.
Certain conditions of superficial properties can provoke spontaneous movement of liquids at corners such as liquid filaments. The understanding of this type of fluid dynamics phenomena is very important in many areas, for example, oil recovery or design of gathering systems of condensed fluids with capillary forces. In previous studies, several models were developed for formation and advancing of filaments at horizontal corners neglecting the gravity force. The objective of this investigation was to provide a mathematical tool to estimate the influence of gravity and to establish a clear approach for taking this effect into account or not. The proposed model is developed from a differential equation applied to an open corner for Poiseuille flow. It provides good agreement with experimental values with a maximum deviation of 3.3%.  相似文献   

18.
分析了2101双相不锈钢实际铸坯的宏观晶粒分布和微观组织转变。结果表明,2101双相不锈钢的柱状晶向等轴晶转变(CET转变)发生在二冷2区末端距铸坯表面25 mm处。在此区域内适当降低铸坯表面冷却强度有助于减小坯壳内部温度梯度促进CET转变,提高铸坯的等轴晶率和扩大角部的等轴晶区域;对微观组织的分析发现,在二冷6区之后提高冷却强度可调整铸坯中心形成的奥氏体形态,有利于晶内及晶界处奥氏体细化和减小晶界处针状奥氏体组织的数量和尺寸,从而在一定程度上提高铸坯的热变形能力。  相似文献   

19.
20.
Kasana RS  Rosenbruch KJ 《Applied optics》1983,22(22):3526-3531
An innovative nondestructive technique for measuring the refractive index of a simple lens is described. The proposed method is superior to existing ones because the focusing error and the spherical aberrations are reduced. Apart from this, the strength parameters (i.e., r1 and r2) of a lens are not required at all since the derived lens-index formula is independent of the lens's physical parameters. The shearing interferometric technique is a sensitive aid for detecting the focal plane of the test lens. A modified criterion for determining the focal length has been used. In this case two miscible liquids or compounds are not necessary. The well-known liquid immersion method is the particular case of this technique. The Murty shearing interferometer has been used as an optical device to observe the defocusing defect in the form of fringes. The amount of defocusing is easily calculated. An equation for this error has been theoretically deduced and experimentally verified. The technique described is quick to perform and easy in handling. The various effects due to the lens's aperture and aberrations, thickness of the glass cell, liquid column, etc. are also discussed. For N liquids, there are N(N - 1)/2 ways of calculating the lens's index. Owing to its nature this is termed the nondestructive nonmiscible-liquid immersion technique for index measurement of a lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号