首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The system TiO2-Bi2Ti4O11 was examined by Raman spectroscopy and X-ray diffraction to determine whether TiO2 is soluble in Bi2Ti4O11. The Raman spectral data obtained from preparations made at ∼ 1050°C and cooled to room temperature led us to conclude that TiO2 is not soluble in the "high-temperature" form of Bi2Ti4O11. It was also found that extensive grinding of the phase identified as the "high-temperature" form converts it to the "low-temperature" form, stable below 250°C.  相似文献   

2.
Processing and Characterization of BaTi4O9   总被引:1,自引:0,他引:1  
BaTi4O9 powder prepared by calcining BaCO3 and TiO2 powders was sintered to over 97% of theoretical density. Less than 5% Ba2Ti9O20 occurred as a second phase in "pure" BaTi4O9, and Al2O3 impurities from processing formed isolated hollandite (∼BaAl2Ti6O16) grains, which were identified by fringes in bright-field TEM images. For pure BaTi4O9 at 1 MHz, a dielectric loss (tan δ) of 5 × 10−4 and dielectric constant of 39 were recorded. Hollandite impurities were found to increase tan δ by 2 orders of magnitude, whereas firing in oxygen decreased tan δ by an order of magnitude.  相似文献   

3.
In this paper we report the effects of formulation on texture development for the "reactive-templated grain growth" (RTGG) of Bi1/2(Na,K)1/2TiO3 (BNKT). The solids formulation for BNKT was systematically varied by prereacting to well—defined alkali and bismuth titanates (Na2Ti3O7 (N2T3), K2Ti2O5 (K2T2), and Bi2Ti4O11 (B2T4)). Use of these precursors in different BNKT formulations determined that the amount of expansion associated with reacting dry-pressed compacts at 600−800°C could be influenced by formulation. Lotgering factors ( F 00 l ) derived from Θ/2Θ X-ray diffraction scans indicated that the formulation route strongly affected the {00 l } texture development in tape-cast and sintered specimens. Prereacting alkali carbonates with TiO2 to form N2T3 and K2T2 inhibited texture development in RTGG-processsed BNKT. However, when Bi2O3 was prereacted to form B2T4, the measured F 00 l increased from 0.5 to 0.7.  相似文献   

4.
The phase relations at a temperature below "subsolidus" in the system Al2O3–B2O3–Nd2O3 are reported. Specimens were prepared from various compositions of Al2O3, B2O3, and Nd2O3 of purity 99.5%, 99.99%, and 99.9%, respectively, and fired at 1100°C. There are six binary compounds and one ternary compound in this system. The ternary compound, NdAl3(BO3)4 (NAB), has a phase transition at 950°C ± 15°C. The high-temperature form of NAB has a second harmonic generation (SHG) efficiency of KH2PO4 (KDP) of the order of magnitude of the form which has been used as a good self-activated laser material, and the low-temperature form of NAB has no SHG efficiency.  相似文献   

5.
The existence of stable and metastable forms of 2ZrO2·P2O5 and the subsolidus phase relations in the system ZrO2-ZrP2O7 were confirmed before investigation of the ternary system. The synthesis and thermal behavior of ZrW2O8 were reinvestigated, and the system WO3-P2O5 was examined cursorily. A ternary compound, 2ZrO2·WO3·P2O5, was found, and compatibility triangles for the system between 1105° and 1150°C were established. The ternary compound is compatible with ZrO2, WO3, and three binary compounds, giving rise to five composition triangles. In addition, ZrP2O7, WO3, and "W2O3(PO4)2" were compatible.  相似文献   

6.
The thermal stability of Al3BC3 powder was analyzed. Nearly X-ray-pure Al3BC3 powder was obtained through the calcination of the aluminum, B4C, and carbon mixture at 1800°C in Ar. In contrast to the former investigations, which reported the melting of so called "Al8B4C7" at 1800°C, Al3BC3 did not melt up to 2100°C. Instead, it decomposed by the vaporization of aluminum. The decomposition occurred distinctly at 1400° and 1900°C in flowing Ar and a sealed carbon crucible, respectively. The results indicated that the decomposition temperature depended on the partial pressure of aluminum vapour in the atmosphere.  相似文献   

7.
β-Si3N4 ceramics sintered with Yb2O3 and ZrO2 were fabricated by gas-pressure sintering at 1950°C for 16 h changing the ratio of "fine" and "coarse" high-purity β-Si3N4 raw powders, and their microstructures were quantitatively evaluated. It was found that the amount of large grains (greater than a few tens of micrometers) could be drastically reduced by mixing a small amount of "coarse" powder with a "fine" one, while maintaining high thermal conductivity (>140 W·(m·K)−1). Thus, this work demonstrates that it is possible for β-Si3N4 ceramics to achieve high thermal conductivity and high strength simultaneously by optimizing the particle size distribution of raw powder.  相似文献   

8.
The subsolidus phase relationships in Si3N4–AlN–rare-earth oxide (Me2O3 where Me=Nd, Sm, Gd, Dy, Er, and Yb) systems were studied. Solid-solution regions with the α-Si3N4 structure were delineated along the Si3N4–"Me2O3:9AIN" joins for all of the rare-earth oxide systems studied. The solubility limits of these solid solutions increased with decreasing size of the rare-earth ions.  相似文献   

9.
Conductivity was measured for Li4SiO4 and its solid solutions with Li4GeO4 over a wide frequency range to separate clearly the effects of electrode polarization, conductance relaxations, etc., and to obtain true "dc" conductivities. The conductivities of all the electrolytes are markedly temperature-dependent, ranging from 10−8 to 10−10Ω−1 cm−1 at 100°C to 10−2 to 1010Ω−1 cm−1 at 700°C. For solid solutions with the Li4GeO4 structure, conductivities fit the Arrhenius equation over a wide temperature range, but at higher temperatures a change in activation energy occurs, corresponding to a first-order phase transition. In contrast, solid solutions with the Li4SiO4 structure show changes in activation energy which do not correspond to phase transitions, but which appear to indicate changes in the conduction mechanism.  相似文献   

10.
Detailed microstructural analysis of a 10 mol% Y2O3 fluxed hot-pressed silicon nitride reveals that, in addition to the yttrium-silicon oxynitride phase located at the multiple Si3N4 grain junctions, there is a thin boundary phase 10 to 80 Å wide separating the silicon nitride and the oxynitride grains. Also, X-ray microanalysis from regions as small as 200 Å across demonstrates that the yttrium-silicon oxynitride, Y2Si(Si2O3N4), phase can accommodate appreciable quantities of Ti, W, Fe, Ni, Co, Ca, Mg, Al, and Zn in solid solution. This finding, together with observations of highly prismatic Si3N4 grains enveloped by Y2Si(Si2O3N4), suggests that densification occurred by a liquid-phase "solution-reprecipitation" process.  相似文献   

11.
Barium gallogermanate glasses were prepared with substitutions of Al2O3, Y2O3, La2O3, and Gd2O3 for Ga2O3. The effects of these substitutions on the glass transformation temperature, viscosity, thermal expansion, and molar volume have been determined. The changes in properties associated with each substitutional ion are consistent with structural roles reported for these ions in other glasses. Aluminum acts as an intermediate with [AlO4] tetrahedra substituting directly for [GaO4] tetrahedra. Yttrium and gadolinium act as "atypical" modifier ions because of their large field strengths. Finally, the properties of the La2O3-substituted glasses indicate a possible dual structural role for La3+ ions in these glasses.  相似文献   

12.
The phase stabilities in the(1−x)Ba(Zn1/3Ta2/3)O3 (BZT)-xBaZrO3(BZ)system have been investigated using samples prepared by the mixed oxide method. The substitution of Zr4+destabilizes the 1:2 cation ordering in BZT and pro-motes the formation of a cubic, 1:1 ordered structure with a doubled perovskite repeat. The homogeneity range of the 1:1 phase extends from x = 0.04 to approximately x = 0.25; substitutions beyond this range stabilize a disordered perovskite. The limits of stability of the 1:1 ordering coin-cide with compositions previously found to exhibit anoma-lies in their dielectric loss. The range of homogeneity is consistent with a "random layer" model for the 1:1 ordered "Ba{β';1/2β1/2}O3" structure. In this model the B× positions are assumed to be occupied exclusively by Ta5+, and the b× sites by a random distribution of Zn2+, Zr4+, and the remaining Ta 5+ cations. The validity of the model, where the ordered solid solutions can be represented by Ba{[Zn2− y /3Ta(1−2 y )/3Zr y ]1/2[Ta]1/2}O3(y =2x)was con-firmed by Rietveld refinements conducted using data col-lected with a synchrotron X-ray source.  相似文献   

13.
A structural phase transition between the cubic (space group, Fm 3 m) and tetragonal (space group, P 42 /nmc) phases in a zirconia–ceria solid solution (Zr1−xCexO2) has been observed by Raman spectroscopy. The cubic–tetragonal ( c–t" ) phase boundary in compositionally homogeneous samples exists at a composition X0 (0.8 < X0 < 0.9) at room temperature, where t " is defined as a tetragonal phase whose axial ratio c/a equals unity. The axial ratio c/a decreases with an increase of ceria concentration and becomes 1 at a composition X'0 (0.65 < X'0 < 0.7) at room temperature. The sample with a composition between X0 and X'0 is t " ZrO2. By Raman scattering measurements at high temperatures, the tetragonal ( t" ) → cubic and cubic → tetragonal phase transitions occur above 400°C in Zr0.2 Ce0.8O2 solid solution.  相似文献   

14.
The "subsolidus" phase relations at room temperature in the system CaO-B2O3-BaO are investigated. Specimens of various compositions were prepared from appropriate ratios of CaCO3, B2O3, and BaCO3, and fired from 780° to 1040°C according to their melting points. There are three ternary compounds in this system. The crystal structures of these compounds were determined by X-ray diffraction (XRD). CaBa2(BO3)2 and Ca5Ba2B10O22 are monoclinic structures. The lattice constants a = 14.221 Å, b = 4.569 Å, c = 11.926 A, β= 99.947°, and V = 763.4 å3 for CaBa2(BO3)2 and a = 15.714 å, b = 6.184 å, c = 10.204 å, β= 93.954°, and V = 989.29 å3 for Ca5Ba2B10O22 are obtained. The third compound, CaBa2(B3O6)2, is isostructural with the high form of BaB2O4 with lattice constants a = 7.167 å and c = 35.298 å. Powder second harmonic generation efficiencies of these ternary compounds were measured using a homemade apparatus.  相似文献   

15.
Phase relations within the "V2O3–FeO" and V2O3–TiO2 oxide systems were determined using the quench technique. Experimental conditions were as follows: partial oxygen pressures of 3.02 × 10−10, 2.99 × 10−9, and 2.31 × 10−8 atm at 1400°, 1500°, and 1600°C, respectively. Analysis techniques that were used to determine the phase relations within the reacted samples included X-ray diffractometry, electron probe microanalysis (energy-dispersive spectroscopy and wavelength-dispersive spectroscopy), and optical microscopy. The solid-solution phases M2O3, M3O5, and higher Magneli phases (M n O2 n −1, where M = V, Ti) were identified in the V2O3–TiO2 system. In the "V2O3–FeO" system, the solid-solution phases M2O3 and M3O4 (where M = V, Ti), as well as liquid, were identified.  相似文献   

16.
The elevated-temperature slow-crack-growth behavior of HS-130 Si3N4 was studied by extending "controlled" surface cracks in bars loaded in 4-point bending. Several such nonin-teracting cracks were produced on the tensile surfaces of bend bars by Knoop microhardness indentation. The stress and dimensions of the subcritically growing cracks were used to calculate the stress-intensity factor, K1 , from fracture-mechanics formulas for semielliptical surface cracks in bending. The crack-growth velocity, v, was obtained by dividing crack extension by loading time interval. The data indicated very large scatter in measured velocities for given K1 values, which was interpreted as due to the interaction of the small cracks with local material heterogeneities. No simple functional relation between K I and v could be established for HS-130 Si3N 4 from the v − K 1 data.  相似文献   

17.
A group of new y M-phase/(1− y ) Li2+ x Ti1−4 x Nb3 x O3 composite ceramics with adjustable permittivities for low-temperature co-fired ceramic applications was initially investigated in the study. The 0.5 M-phase/0.5 Li2+ x Ti1−4 x Nb3 x O3 ( x =0.01, 0.02, 0.04, 0.06, 0.081) composite ceramics were first investigated to find the appropriate "Li2TiO3ss" composition ( x value). The best dielectric properties of ɛr=40.1, Q × f values up to 9318 GHz, τf=25 ppm/°C, were obtained for the ceramics composites at x =0.02. Based on the good dielectric properties, the suitable "Li2TiO3ss" composition with x =0.02 was mixed with the Li1.0Nb0.6Ti0.5O3 powder as the ratio of y "M-phase"/(1− y ) "Li2TiO3ss" ( y =0.2, 0.4, 0.5, 0.6, 0.8). By adjusting the y values, the group of composite ceramics could exhibit largely are adjustable permittivities varying from ∼20 to ∼60, while Q × f and τf values relatively good. Nevertheless, in this study, because there are interactions between the M-phase and Li2TiO3ss during sintering process, their microwave dielectric properties could not be predicted precisely by the empirical model.  相似文献   

18.
NiAl2O4/SiO2 and Co2+-doped NiAl2O4/SiO2 nanocomposite materials of compositions 5% NiO – 6% Al2O3– 89% SiO2 and 0.2% CoO – 4.8% NiO – 6% Al2O3– 89% SiO2, respectively, were prepared by a sol–gel process. NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals were grown in a SiO2 amorphous matrix at around 1073 K by heating the dried gels from 333 to 1173 K at the rate of 1 K/min. The formations of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in SiO2 amorphous matrix were confirmed through X-ray powder diffraction, Fourier transform infrared spectroscopy, differential scanning calorimeter, transmission electron microscopy (TEM), and optical absorption spectroscopy techniques. The TEM images revealed the uniform distribution of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in the amorphous SiO2 matrix and the size was found to be ∼5–8 nm.  相似文献   

19.
The 1780°C isothermal section of the reciprocal quasiternary system Si3N4-SiO2-BeO-Be3N2 was investigated by the X-ray analysis of hot-pressed samples. The equilibrium relations shown involve previously known compounds and 8 newly found compounds: Be6Si3N8, Be11Si5N14, Be5Si2N6, Be9Si3N10, Be8SiO4N4, Be6O3N2, Be8O5N2, and Be9O6N2. Large solid solubility occurs in β-Si3N4, BeSiN2, Be9Si3N10, Be4SiN4, and β-Be3N2. Solid solubility in β-Si3N4 extends toward Be2SiO4 and decreases with increasing temperature from 19 mol% at 1770°C to 11.5 mol% Be2SiO4 at 1880°C. A 4-phase isotherm, liquid +β-Si3N4 ( ss )Si2ON2+ BeO, exists at 1770°C.  相似文献   

20.
Crystal chemistry and subsolidus phase equilibrium studies of the Ba-Nd-Cu-O system near the CuO and Nd2O3 corners have been carried cut at 950°C in air. Two solid-solution series have been identified in the Ba-Nd-Cu-O system. The first series involves the high- T c superconductor phase, and has the formula Ba2–xNd1+xCu3O6+z, where × < ≅ 0.7. At the ideal compound stoichiometry of Ba2NdCu3O6+z, the transformation from the high- T c orthorhombic to tetragonal phase occurs at 550°–575°C in air. This temperature varies as a function of composition, and at x ≅ 0.2 to 0.3 it occurs at 950°C. The second solid solution is the non-superconducting "brown phase" represented by Ba2+2x-Nd4–2xCu2–xO10–2z 0 ≤ x ≤ 0.1. Preliminary phase diagrams of the BaO–Nd2O3 and Nd2O3–CuOx systems are also presented. Standard X-ray diffraction patterns of BaNd2–CuO5 and (Nd1.9Ca0.1)CuO4–z are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号