首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Piezoelectric ZnO thin films have been successfully used for multilayer surface acoustic wave (SAW) and bulk acoustic wave (BAW) devices. Magnesium zinc oxide (Mg/sub x/Zn/sub 1-x/O) is a new piezoelectric material, which is formed by alloying ZnO and MgO. Mg/sub x/Zn/sub 1-x/O allows for flexibility in thin film SAW device design, as its piezoelectric properties can be tailored by controlling the Mg composition, as well as by using Mg/sub x/Zn/sub 1-x/O/ZnO multilayer structures. We report the metal-organic chemical vapor deposition (MOCVD) growth, structural characterization and SAW evaluation of piezoelectric Mg/sub x/Zn/sub 1-x/O (x<0.35) thin films grown on (011~2) r-plane sapphire substrates. The primary axis of symmetry, the c-axis, lies on the Mg/sub x/Zn/sub 1-x/O growth plane, resulting in the in-plane anisotropy of piezoelectric properties. SAW test devices for Rayleigh and Love wave modes, propagating parallel and perpendicular to the c-axis, were designed and fabricated. Their SAW properties, including velocity dispersion and piezoelectric coupling, were characterized. It has been found that the acoustic velocity increases, whereas the piezoelectric coupling decreases with increasing Mg composition in piezoelectric Mg/sub x/Zn/sub 1-x/O films.  相似文献   

2.
Diamond has the highest surface acoustic wave (SAW) velocity among all materials and thus can provide much advantage for fabrication of high frequency SAW devices when it is combined with a piezoelectric thin film. Basic SAW properties of layered structures consisting of a piezoelectric material layer, a diamond layer and a substrate were examined by theoretical calculation. Rayleigh mode SAW's with large SAW velocities up to 12,000 m/s and large electro-mechanical coupling coefficients from 1 to 11% were found to propagate in ZnO/diamond/Si, LiNbO3/diamond/Si and LiTaO3/diamond/Si structures. It was also found that a SiO2/ZnO/diamond/Si structure can realize a zero temperature coefficient of frequency with a high phase velocity of 8,000-9,000 m/s and a large electro-mechanical coupling coefficient of up to 4%  相似文献   

3.
A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut 〈110〉-propagating GaAs substrates are investigated in this article, including SAW velocity, effective piezoelectric coupling constant, propagation loss, diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 μm and with films of different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K2 and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2 or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the 〈110〉 propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the 〈100〉 direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values  相似文献   

4.
Poly-crystal zinc oxide (ZnO) films with c-axis (002) orientation have been successfully grown on the strontium (Sr) modified lead titanate ceramic substrates with different Sr dopants by r.f. magnetron sputtering technique. Highly oriented ZnO films with c-axis normal to the substrates can be obtained under a total pressure of 10 mTorr containing 50% argon and 50% oxygen and r.f. power of 70 W for 3 hours. Crystalline structures of the films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The phase velocity, electromechanical coupling coefficient and temperature coefficient of frequency of surface acoustic wave (SAW) devices with ZnO/IDT/PT (IDT, inter-digital transducer; PT, PbTiO3 ceramics) structure were investigated. The devices with ZnO/IDT/PT structure shows that the ZnO film effectively raise the electromechanical coupling coefficient (kappa2) from 3.8% to 9.9% of the device with the concentrations of Sr dopants of 0.15. It also improves the temperature coefficient of frequency of SAW devices.  相似文献   

5.
Piezoelectric thin films on high acoustic velocity nonpiezoelectric substrates, such as ZnO, AlN, or GaN deposited on diamond or sapphire substrates, are attractive for high frequency and low-loss surface acoustic wave devices. In this work, ZnO films are deposited on AlxGa1-xN/c-Al2O3 (0 < or = chi < or = 1) substrates using the radio frequency (RF) sputtering technique. In comparison with a single AlxGa1-xN layer deposited on c-Al2O3 with the same total film thickness, a ZnO/AlxGa1-xN/c-Al2O3 multilayer structure provides several advantages, including higher order wave modes with higher velocity and larger electromechanical coupling coefficient (K2). The surface acoustic wave (SAW) velocities and coupling coefficients of the ZnO/AlxGa1-xN/c-Al2O3 structure are tailored as a function of the Al mole percentage in AlxGa1-xN films, and as a function of the ZnO (h1) to AlxGa1-xN (h2) thickness ratio. It is found that a wide thickness-frequency product (hf) region in which coupling is close to its maximum value, K(2)max, can be obtained. The K(2)max of the second order wave mode (h1 = h2) is estimated to be 4.3% for ZnO/GaN/c-Al2O3, and 3.8% for ZnO/AlN/c-Al2O3. The bandwidth of second and third order wave modes, in which the coupling coefficient is within +/- 0.3% of K(2)max, is calculated to be 820 hf for ZnO/GaN/c-Al2O3, and 3620 hf for ZnO/AlN/c-Al2O3. Thus, the hf region in which the coupling coefficient is close to the maximum value broadens with increasing Al content, while K(2)max decreases slightly. When the thickness ratio of AlN to ZnO increases, the K(2)max and hf bandwidth of the second and third higher wave modes increases. The SAW test devices are fabricated and tested. The theoretical and experimental results of velocity dispersion in the ZnO/AlxGa1-xN/c-Al2O3 structures are found to be well matched.  相似文献   

6.
Piezoelectric thin film zinc oxide (ZnO) and its ternary alloy magnesium zinc oxide (Mg/sub x/Zn/sub 1-x/O) have broad applications in transducers, resonators, and filters. In this work, we present a new bulk acoustic wave (BAW) structure consisting of Al/Mg/sub x/Zn/sub 1-x/O/n/sup +/-ZnO/r-sapphire, where Al and n/sup +/ type ZnO serve as the top and bottom electrode, respectively. The epitaxial Mg/sub x/Zn/sub 1-x/O films have the same epitaxial relationships with the substrate as ZnO on r-Al/sub 2/O/sub 3/, resulting in the c-axis of the Mg/sub x/Zn/sub 1-x/O being in the growth plane. This relationship promotes shear bulk wave propagation that affords sensing in liquid phase media without the dampening effects found in longitudinal wave mode BAW devices. The BAW velocity and electromechanical coupling coefficient of Mg/sub x/Zn/sub 1-x/O can be tailored by varying the Mg composition, which provides an alternative and complementary method to adjust the BAW characteristics by changing the piezoelectric film thickness. This provides flexibility to design the operating frequencies of thin film bulk acoustic wave devices. Frequency responses of devices with two acoustic wave modes propagating in the specified structure are analyzed using a transmission line model. Measured results show good agreement with simulation.  相似文献   

7.
High-frequency surface acoustic wave (SAW) devices based on diamond that have been realized to date utilize c-axis-oriented ZnO as the piezoelectric thin film. This material, with SiO2 overlay, shows excellent characteristics of a high phase velocity of over 10,000 m/s and a zero temperature coefficient, and it has been successfully applied to high-frequency SAW filters and resonators. To expand on materials used on diamond, the theoretical calculation has been carried out for LiNbO3/diamond, and a high electromechanical coupling coefficient up to 9.0% is expected. In this work, the characteristics of SiO2/LiNbO3/diamond were studied by computer simulation, emphasizing a zero temperature coefficient with a high coupling coefficient. Calculations are carried out for the phase velocity, the electromechanical coupling coefficient, and the temperature coefficient of the Rayleigh wave and its higher mode Sezawa wave. As a result, SiO2/IDT/LiNbO3/diamond is found to offer a zero temperature coefficient with a very high coupling coefficient up to 10.1% in conjunction with a high phase velocity of 12,100 m/s.  相似文献   

8.
《Materials Letters》2006,60(9-10):1140-1143
Lead zirconate titanate (PZT) thin films were created on ST-X quartz using radio frequency magnetron sputtering deposition. PZT films deposited on quartz are used as a new piezoelectric substrate for surface acoustic wave (SAW) devices. Microelectromechanical technique was used to fabricate interdigital transducers on the surface of the substrate to be used as a SAW delay line device. The results show that the PZT film was successfully deposited on ST-X quartz, and that the PZT film on ST-X quartz can enhance the electromechanical coupling coefficients of SAW.  相似文献   

9.
The effect of an SiO(2) buffer layer on the surface acoustic wave (SAW) properties of ZnO/SiO(2)/GaAs structure is examined. Both theoretical and experimental results show that the coupling coefficient is increased appreciably by providing an SiO(2 ) film between the ZnO film and the GaAs substrate. Adding an SiO (2) film is also beneficial to the promotion of quality of ZnO thin film. The results could be useful for the further development of monolithic SAW devices.  相似文献   

10.
Diamond-like carbon (DLC) film is a promising candidate for surface acoustic wave (SAW) device applications because of its higher acoustic velocity. A zinc oxide (ZnO) thin film has been deposited on DLC film/Si substrate by RF magnetron sputtering; the optimized parameters for the ZnO sputtering are RF power density of 0.55 W/cm2, substrate temperature of 380 °C, gas flow ratio (Ar/O2) of 5/1 and total sputter pressure of 1.33 Pa. The results showed that when the thickness of the ZnO thin films was decreased, the phase velocity of the SAW devices increased significantly.  相似文献   

11.
ZnO films with c-axis (0002) orientation have been grown on SiO2/Si substrates with an Al2O3 buffer layer by radio frequency magnetron sputtering. Crystalline structures of the films were investigated by X-ray diffraction, atomic force microscopy and scanning electron microscopy. The center frequency of the surface acoustic wave (SAW) device with a 4.8 μm thick Al2O3 buffer layer was measured to be about 408 MHz, which was much higher than that (265 MHz) of ZnO/SiO2/Si structure and approaches that (435 MHz) of ZnO/sapphire. It is a possible way as an alternative for the sapphire substrate for the high frequency SAW device applications, and is also useful to integrate the semiconductor and high frequency SAW devices on the same Si substrate.  相似文献   

12.
Thin piezoelectric polycrystalline films such as AlN, ZnO, etc., are of great interest for the fabrication of thin film bulk/surface acoustic resonators (TFBARs or TFSARs). It is well-known that the degree of c-axis orientation of the thin films correlates directly with the electromechanical coupling. However, the degree of c-axis orientation of the piezoelectric film is, in turn, influenced by other parameters such as the structure of the substrate material, the matter of whether the c-axis is up or down (polarity), and the growth parameters used. The correlation of these three aspects with the electromechanical coupling of the AlN-thin films, is studied here. Thin AlN films, prepared in a magnetron sputtering system, have been deposited onto thin Al, Mo, Ni, Ti, and TiN films. Such thin high-conducting layers are used to form the bottom electrode of TFBAR devices as well as to define a short-circuiting plane in TFSAR devices. In both cases, they serve as a substrate for the growth of the piezoelectric film. It has been found that the degree of orientation and the surface roughness of the bottom metal layer significantly affects the texture of the AlN films, and hence its electroacoustic properties. For this reason, the surface morphology and texture of the metal layers and their influence on the growth of AlN on them has been systematically studied. Finally, FBARs with both Al and Ti electrodes have been fabricated and evaluated electroacoustically.  相似文献   

13.
In this paper we describe a method to assess the piezoelectric response of a piezoelectric thin film deposited on a conductive substrate. It is based on analyzing the frequency response of a surface acoustic wave (SAW) filter made on the piezoelectric thin film. For this analysis, we use a circuital model that takes into account the theoretical response of the ideal filter along with all the external and internal parasitic effects that deteriorate the response. Using this model, we can obtain the electromechanical coupling factor of the piezoelectric material (k2 m) with good accuracy. If parasitic effects are not considered, k2 m can be underestimated by a factor of up to 20. We have tested our model using SAW filters made on AlN thin films sputtered on substrates with different conductivities. A discussion on the relation between the different circuital elements and the physical properties of the filters also is provided.  相似文献   

14.
The c-axis-oriented aluminum nitride (AlN) films were deposited on z-cut lithium niobate (LiNbO3) substrates by reactive RF magnetron sputtering. The crystalline orientation of the AlN film determined by x-ray diffraction (XRD) was found to be dependent on the deposition conditions such as substrate temperature, N2 concentration, and sputtering pressure. Highly c-axis-oriented AlN films to fabricate the AlN/LiNbO3-based surface acoustic wave (SAW) devices were obtained under a sputtering pressure of 3.5 mTorr, N2 concentration of 60%, RF power of 165 W, and substrate temperature of 400°C. A dense pebble-like surface texture of c-axis-oriented AlN film was obtained by scanning electron microscopy (SEM). The phase velocity and the electromechanical coupling coefficient (K2) of SAW were measured to be about 4200 m/s and 1.5%, respectively. The temperature coefficient of frequency (TCF) of SAW was calculated to be about -66 ppm/°C  相似文献   

15.
The new layered structure, ZnO/AlN/diamond, for surface acoustic wave (SAW) devices is investigated for gigahertz-band applications. This structure combines the advantages of both piezoelectric materials, with a high electromechanical coupling coefficient (K2) of ZnO and high acoustic velocity of AlN. Theoretical results show that Rayleigh mode SAWs with large phase velocities up to 12,200 m/s and large K2 from 1 to 3% were generated with this new structure.  相似文献   

16.
Recently, piezoelectric thin films including zinc oxide (ZnO) and aluminium nitride (AlN) have found a broad range of lab-on-chip applications such as biosensing, particle/cell concentrating, sorting/patterning, pumping, mixing, nebulisation and jetting. Integrated acoustic wave sensing/microfluidic devices have been fabricated by depositing these piezoelectric films onto a number of substrates such as silicon, ceramics, diamond, quartz, glass, and more recently also polymer, metallic foils and bendable glass/silicon for making flexible devices. Such thin film acoustic wave devices have great potential for implementing integrated, disposable, or bendable/flexible lab-on-a-chip devices into various sensing and actuating applications. This paper discusses the recent development in engineering high performance piezoelectric thin films, and highlights the critical issues such as film deposition, MEMS processing techniques, control of deposition/processing parametres, film texture, doping, dispersion effects, film stress, multilayer design, electrode materials/designs and substrate selections. Finally, advances in using thin film devices for lab-on-chip applications are summarised and future development trends are identified.  相似文献   

17.
A method for calculating the characteristics of surface acoustic wave (SAW) propagation in a deformable piezoelectric multilayer medium is presented. The effect of longitudinal and lateral mechanical strain on the SAW phase velocity in a (ZnO or AIN)/SiO2/Si thin film structure for {001}, {111} and {110} silicon crystal planes within the temperature range 293–673 K is studied. The effects of thickness and internal mechanical stresses in the ZnO or A1N piezoelectric film and SiO2 dielectric film on the sensitivity of the SAW phase velocity to strains in the structure are investigated. The Si{110}-based SAW structure with the SAW wavevector oriented in the 10 direction is shown to possess maximum operating frequency sensitivity to both longitudinal and lateral strain. The parameters of SAW structure stable to mechanical loads are determined. ZnO and SiO2 layer deposition on silicon is shown to increase the SAW phase velocity sensitivity to longitudinal strain and to decrease its sensitivity to lateral strain in the structure.  相似文献   

18.
The (1120) textured polycrystalline ZnO films with a high shear mode electromechanical coupling coefficient k15 are obtained by sputter deposition. An over-moded resonator, a layered structure of metal electrode film/(1120) textured ZnO piezoelectric film/metal electrode film/silica glass substrate was used to characterize k15 by a resonant spectrum method. The (1120) textured ZnO piezoelectric films with excellent crystallite c-axis alignment showed an electromechanical coupling coefficient k15 of 0.24. This value was 92% of k15 value in single-crystal (k15 = 0.26).  相似文献   

19.
There are various types of electron cyclotron resonance (ECR) sputtering systems, DC-mode, RF-mode, etc. We reported that zinc oxide (ZnO) films on glass substrates deposited by DC-mode ECR and RF-mode ECR sputtering systems had shown excellent piezoelectric properties and c-axis orientations. The RF-mode ECR sputtering system was capable of depositing ZnO films on glass substrates without evidence of column and fiber grains in cross section and driving a 1.1 GHz fundamental Rayleigh surface acoustic wave (SAW). In this paper, the properties of ZnO film deposited by an RF-magnetron-mode ECR sputtering system, which has added magnets to the outside of a cylindrical zinc metal (Zn) target of the RF-mode ECR sputtering system, are investigated. It is confirmed that the SAW filters using ZnO films on an interdigital transducer (IDT)/glass substrate deposited by the RF-magnetron-mode ECR sputtering exhibit almost the same effective electromechanical coupling factors (keff) as the theoretical keff values calculated by finite element method (FEM) using the constants of ZnO single crystal (measured keff values are 97% of the theoretical values) and 0.6~3.7 dB lower insertion loss in comparison with the films deposited by the DC-mode ECR and the RF-mode ECR sputtering system  相似文献   

20.
LiNbO3因其优异的压电性能和声表面波特性而被广泛应用于声表面波器件中。对LiNbO3的声表面波特性及薄膜制备技术进行了综述,并着重介绍了LiNbO3/蓝宝石及LiNbO3/金刚石多层结构的制备、声表面波特性的理论研究及压电薄膜研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号