首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The role of airborne infochemicals in host selection by the parasitoidCotesia rubecula (Marshal) (Hymenoptera: Braconidae) was examined in a wind tunnel. To elucidate the role of volatile chemicals in attractingC. rubecula to cabbage infested by the host [Pieris rapae L. (Lepidoptera: Pieridae)], the potential sources of volatiles related toP. rapae infestation on cabbage were tested individually. The responses of females to nonhost plant species, bean and geranium, as well as to frass of a nonhost lepidopteran were also examined.C. rubecula was attracted to cabbage previously infested byP. rapae and to frass and regurgitate ofP. rapae. No attraction was observed to larvae ofP. rapae alone. Females were also attracted to mechanically damaged cabbage, cabbage previously infested byPlutella xylostella L. (Lepidoptera: Plutellidae) (a nonhost lepidopteran herbivore), and cabbage previously infested by snails (a nonhost, noninsect herbivore). Intact cabbage, bean, and geranium plants elicited no attraction. A low frequency of attraction was observed to mechanically damaged bean and geranium. Attraction was also observed to frass ofP. xylostella. Volatiles from cabbage related to damage, and volatiles from frass and regurgitate of the host seem to play an important role in guidingC. rubecula to plants infested by its host.  相似文献   

2.
The responses of femaleAphidius ervi to odors from a host food plant (Vicia faba), host aphids (Acyrthosiphon pisum), nonhost aphids (Aphis fabae), and aphid-plant complexes were investigated in a specially designed wind tunnel and a Y-tube olfactometer. In single-target (no-choice) and two-target (dual-choice) experiments, plant volatiles played a crucial role in the host foraging behavior ofA. ervi. The odor from theA. pisum-plant complex elicited the strongest responses byA. ervi females, followed by the odor from plants previously damaged by the feeding ofA. pisum. There was a significantly weaker response to odor fromA. pisum in the absence of the plant and to undamaged plants. Similarly, mechanically damaged plants and plants infested with the nonhost aphidA. fabae did not elicit strong responses. A plant that had been damaged byA. pisum and subsequently washed with distilled water was as attractive as an unwashed, previously infested plant.Aphidius ervi probably overcomes the reliability-detectability problem by selectively responding to herbivore-induced, volatile, semiochemical cues emitted by the first trophic level and by distinguishing between the volatiles induced by host and nonhost aphids.  相似文献   

3.
When attacked by herbivorous insects, many plants emit volatile compounds that are used as cues by predators and parasitoids foraging for prey or hosts. While such interactions have been demonstrated in several host–plant complexes, in most studies, the herbivores involved are leaf-feeding arthropods. We studied the long-range plant volatiles involved in host location in a system based on a very different interaction since the herbivore is a fly whose larvae feed on the roots of cole plants in the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae). The parasitoid studied is Trybliographa rapae Westwood (Hymenoptera: Figitidae), a specialist larval endoparasitoid of D. radicum. Using a four-arm olfactometer, the attraction of naive T. rapae females toward uninfested and infested turnip plants was investigated. T. rapae females were not attracted to volatiles emanating from uninfested plants, whether presented as whole plants, roots, or leaves. In contrast, they were highly attracted to volatiles emitted by roots infested with D. radicum larvae, by undamaged parts of infested roots, and by undamaged leaves of infested plants. The production of parasitoid-attracting volatiles appeared to be systemic in this particular tritrophic system. The possible factors triggering this volatile emission were also investigated. Volatiles from leaves of water-stressed plants and artificially damaged plants were not attractive to T. rapae females, while volatiles emitted by leaves of artificially damaged plants treated with crushed D. radicum larvae were highly attractive. However, T. rapae females were not attracted to volatiles emitted by artificially damaged plants treated only with crushed salivary glands from D. radicum larvae. These results demonstrate the systemic production of herbivore-induced volatiles in this host-plant complex. Although the emission of parasitoid attracting volatiles is induced by factors present in the herbivorous host, their exact origin remains unclear. The probable nature of the volatiles involved and the possible origin of the elicitor of volatiles release are discussed.  相似文献   

4.
We investigated volatile infochemicals possibly involved in location of the generalist predatory mite Neoseiulus californicus to plants infested with spider mites in a Y-tube olfactometer. The predators significantly preferred volatiles from lima bean leaves infested with Tetranychus urticae to uninfested lima bean leaves. Likewise, they were attracted to volatiles from artificially damaged lima bean leaves and those from T. urticae plus their visible products. Significantly more predators chose infested lima bean leaves from which T. urticae plus their visible products had been removed than artificially damaged leaves, T. urticae, and their visible products. These results suggest that N. californicus is capable of exploiting a variety of volatile infochemicals originating from their prey, from the prey-foodplants themselves, and from the complex of the prey and the host plants (e.g., herbivore-induced volatiles). We also investigated predator response to some of the synthetic samples identified as volatile components emitted from T. urticae-infested lima bean leaves and/or artificially damaged lima bean leaves. The predators were attracted to each of the five synthetic volatile components: linalool, methyl salicylate, (Z)-3-hexen-1-ol, (E)-2-hexenal, and (Z)-3-hexenyl acetate. The role of each volatile compound in prey-searching behavior is discussed.  相似文献   

5.
The female parasitic waspCotesia kariyai discriminated between the volatiles of corn leaves infested by younger host larvaePseudaletia separata (first to fourth instar) and uninfested leaves in a Y-tube olfactometer; the wasps were attracted to the infested leaves. In contrast, when corn plants were infested by the later stages (fifth and sixth instar) of the armyworm, the wasps did not distinguish between infested corn leaves and uninfested corn leaves in the olfactometer. Mechanically damaged leaves were no more attractive than undamaged leaves, and host larvae or their feces were not attractive to the parasitoid. Through chemical analysis, the herbivore-induced plant volatiles were identified in the headspace of infested corn leaves. The herbivore-induced volatiles (HIVs) constituted a larger proportion of the headspace of corn leaves infested by early instar armyworms than of corn leaves infested by late instar armyworms. Application of third-instar larval regurgitant onto artificially damaged sites of leaves resulted in emission of parasitoid attractants from the leaf, whereas leaves treated with sixth-instar regurgitant did not. The function of this herbivore-stage related specificity of herbivore-induced synomones is discussed in a tritrophic context.  相似文献   

6.
Responses of Neoseiulus cucumeris (a predatory mite) and the predatory insect Orius strigicollis to volatiles associated with two different plant species infested with onion thrips, Thrips tabaci, were examined in a Y-tube olfactometer. Both predators species showed a significant preference for volatiles from infested cucumber leaves without T. tabaci over clean air. However, they were not attracted to volatiles from uninfested cucumber leaves, artificially damaged cucumber leaves, or volatiles from T. tabaci plus their visible products collected from cucumber leaves. These results suggest that both predator species are capable of exploiting herbivore-induced volatiles from T. tabaci-infested cucumber leaves as a foraging cue. Neither predator was attracted to volatiles from uninfested spring onion leaves, infested spring onion leaves without T. tabaci, or volatiles from T. tabaci plus their visible products collected from spring onion leaves. Interestingly, they avoided volatiles from artificially damaged spring onion leaves. A possible explanation for the non-significant olfactory responses of the predator species to spring onion plants with infestation damage of T. tabaci is discussed.  相似文献   

7.
The blend of volatile compounds emitted by bean plants (Phaseolus vulgaris) infested with greenhouse whitefly (Trialeurodes vaporariorum) has been studied comparatively with undamaged plants and whiteflies themselves. Collection of the volatiles and analysis by gas chromatography revealed more than 20 compounds produced by plants infested with whitefly. Of these, 4 compounds, (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, 3-octanone, and one unidentified compound were emitted at higher levels than from the undamaged control plants. Synthetic (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, or 3-octanone all elicited a significant increase in oriented flight and landing on the source by the parasitoid, Encarsia formosa, in wind tunnel bioassays. Two-component mixtures of the compounds and the three-component mixture all elicited a similar or, in most cases, a better response by the parasitoid, the most effective being a mixture of (Z)-3-hexen-1-ol and 3-octanone. These results demonstrate that E. formosa uses volatiles from the plant-host complex as olfactory cues for host location.  相似文献   

8.
Herbivore feeding induces plants to emit volatiles that are detectable and reliable cues for foraging parasitoids, which allows them to perform oriented host searching. We investigated whether these plant volatiles play a role in avoiding parasitoid competition by discriminating parasitized from unparasitized hosts in flight. In a wind tunnel set-up, we used mechanically damaged plants treated with regurgitant containing elicitors to simulate and standardize herbivore feeding. The solitary parasitoid Cotesia rubecula discriminated among volatile blends from Brussels sprouts plants treated with regurgitant of unparasitized Pieris rapae or P. brassicae caterpillars over blends emitted by plants treated with regurgitant of parasitized caterpillars. The gregarious Cotesia glomerata discriminated between volatiles induced by regurgitant from parasitized and unparasitized caterpillars of its major host species, P. brassicae. Gas chromatography-mass spectrometry analysis of headspace odors revealed that cabbage plants treated with regurgitant of parasitized P. brassicae caterpillars emitted lower amounts of volatiles than plants treated with unparasitized caterpillars. We demonstrate (1) that parasitoids can detect, in flight, whether their hosts contain competitors, and (2) that plants reduce the production of specific herbivore-induced volatiles after a successful recruitment of their bodyguards. As the induced volatiles bear biosynthetic and ecological costs to plants, downregulation of their production has adaptive value. These findings add a new level of intricacy to plant–parasitoid interactions.  相似文献   

9.
The vast majority of studies of plant indirect defense strategies have considered simple tritrophic systems that involve plant responses to attack by a single herbivore species. However, responses by predators and parasitoids to specific, herbivore-induced, volatile blends could be compromised when two or more different herbivores are feeding on the same plant. In Y-tube olfactometer studies, we investigated the responses of an aphid parasitoid, Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae), to odors from cabbage plants infested with the peach-potato aphid Myzus persicae (Sulzer) (Homoptera: Aphididae), in both the presence and absence of a lepidopteran caterpillar, Plutella xylostella L. (Lepidoptera: Plutellidae). Female parasitoids chose aphid-infested plants over uninfested plants but did not distinguish between caterpillar-infested and uninfested plants. When given a choice between odors from an aphid-infested plant and those from a plant infested with diamondback moth larvae, they significantly chose the former. Furthermore, the parasitoids responded equally to odors from a plant infested with aphids only and those from a plant infested with both aphids and caterpillars. The results support the hypothesis that the aphid and the caterpillar induce different changes in the volatile profile of cabbage plants and that D. rapae females readily distinguish between the two. Furthermore, the changes to the plant volatile profile induced by the caterpillar damage did not hinder the responses of the parasitoid to aphid-induced signals.  相似文献   

10.
Apoanagyrus (Epidinocarsis) lopezi De Santis is an endoparasitoid used in the biological control of the cassava mealybug Phenacoccus manihoti Matile-Ferrero in Africa. The response of naive and mated females of A. lopezi to odors from cassava plant (var. Zanaga), parasitized or unparasitized mealybugs, and plant–mealybug host complexes with or without feeding hosts was investigated in a Y-tube olfactometer. Dual-choice tests revealed that mealybug-infested plants and mealybug-damaged plants were the major sources of volatiles that attract female parasitoids to the microhabitat of its hosts. The emission of volatile chemicals appears not to be limited to the infested plant part but to occur systemically throughout the plant. On their own, unparasitized mealybugs were more attractive than uninfested plants or parasitized mealybugs alone. Parasitization of P. manihoti by A. lopezi decreased the response of parasitoids to mealybugs or mealybug–plant complexes. Plants infested with unparasitized hosts attracted more female parasitoids than plants infested with parasitized mealybugs. These results indicate that, in the long-range host-searching process, females of A. lopezi respond mainly to mealybug-induced synomones, and specific host-derived cues play a minor role.  相似文献   

11.
Olfactory responses of the cereal stemborer parasitoid Cotesia sesamiae to volatiles emitted by gramineous host and nonhost plants of the stemborers were studied in a Y-tube olfactometer. The host plants were maize (Zea mays) and sorghum ( Sorghum bicolor), while the nonhost plant was molasses grass (Melinis minutiflora). In single-choice tests, females of C. sesamiae chose volatiles from infested and uninfested host plants and molasses grass over volatiles from the control (soil). In dual-choice tests, the wasp preferred volatiles from infested host plants to those from uninfested host plants. There was no discrimination between molasses grass volatiles and those of uninfested maize, uninfested sorghum, or infested maize. The wasp preferred sorghum volatiles over maize. Combining uninfested maize or sorghum with molasses grass did not make volatiles from the combination more attractive as compared to only uninfested host plants. Infested maize alone was as attractive as when combined with molasses grass. Infested sorghum was preferred over its combination with molasses grass. Local growth conditions of the molasses grasses influenced attractiveness to the parasitoids. Volatiles from Thika molasses grass were attractive, while those from Mbita molasses grass were not. Growing the Thika molasses grass in Mbita rendered it unattractive and vice versa with the Mbita molasses grass. This is a case of the same genotype expressing different phenotypes due to environmental factors.  相似文献   

12.
Frugivorous bats from the Old and New World use odor cues to locate and assess fruit condition. We hypothesized that Egyptian fruit bats (Rousettus aegyptiacus) use as odor cues those volatile compounds that increase in emission rate as fruit ripens. We examined whether the smell of fermentation products may indicate the degree of ripeness to fruit bats. We analyzed volatile compounds in the headspace (the gas space above a fruit in a closed container) of dates (Phoenix dactylifera) and rusty figs (Ficus rubiginosa), both of which are consumed by fruit bats, to elucidate which compounds originate from fermentative pathways and to determine which change in emission rate during ripening. Ethanol, acetaldehyde, and acetic acid were the only volatile compounds detected as products of fermentation in both fruits. In dates, emission rates of these compounds increased during maturation, whereas in rusty figs, they decreased or remained constant. Methanol, although not a fermentation product, increased in emission rate during ripening in both fruits. We found that R. aegyptiacus was neither attracted nor deterred by the smell of methanol at any of the concentrations used. Although the odor of ethanol emanating from food containing concentrations similar to those found in ripe fruit did not attract the bats, at relatively high concentrations (≥1%), the smell of ethanol deterred them. Thus, ethanol at high concentrations may serve as a signal for bats to avoid overripe, unpalatable fruit.  相似文献   

13.
Nonirradiated males and females of Anastrepha obliqua (Macquart) were attracted to and landed more frequently on ripe fruits of Spondias mombin L. than on artificial fruit in wind tunnel bioassays. Porapak Q volatile extracts of S. mombin were also attractive and elicited landing on artificial fruit for both sexes. Combined gas chromatographic–electroantennographic detection (GC-EAD) analysis of volatile extracts showed that nine volatile compounds elicited repeatable antennal responses from females and males. The EAD-active compounds were identified by GC–mass spectrometry (MS) as follows: ethyl butyrate, isopropyl butyrate, hexan-1-ol, propyl butyrate, isobutyl butyrate, ethyl hexanoate, isopentyl butyrate, ethyl benzoate, and ethyl octanoate. In wind tunnel bioassays, males and females were attracted and landed more frequently on lures containing the nine-component blend of synthetic compounds than on unscented controls. Field cage bioassays showed that multilure traps baited with the nine-synthetic blend captured significantly more A. obliqua than traps baited with hydrolyzed protein or water.  相似文献   

14.
Anagrus nilaparvatae, an egg parasitoid of the rice brown planthopper Nilaparvata lugens, was attracted to volatiles released from N. lugens-infested plants, whereas there was no attraction to volatiles from undamaged plants, artificially damaged plants, or volatiles from N. lugens nymphs, female adults, eggs, honeydew, and exuvia. There was no difference in attractiveness between plants infested by N. lugens nymphs or those infested by gravid females. Attraction was correlated with time after infestation and host density; attraction was only evident between 6 and 24 hr after infestation by 10 adult females per plant, but not before or after. Similarly, after 24 hr of infestation, wasps were attracted to plants with 10 to 20 female planthoppers, but not to plants with lower or higher numbers of female planthoppers. The attractive time periods and densities may be correlated with the survival chances of the wasps' offspring, which do not survive if the plants die before the wasps emerge. Wasps were also attracted to undamaged mature leaves of a rice plant when one of the other mature leaves had been infested by 10 N. lugens for 1 d, implying that the volatile cues involved in host location by the parasitoid are systemically released. Collection and analyses of volatiles revealed that 1 d of N. lugens infestation did not result in the emission of new compounds or an increase in the total amount of volatiles, but rather the proportions among the compounds in the blend were altered. The total amounts and proportions of the chemicals were also affected by infestation duration. These changes in volatile profiles might provide the wasps with specific information on host habitat quality and thus could explain the observed behavioral responses of the parasitoid.  相似文献   

15.
Learning of host-induced plant volatiles by Cotesia kariyai females was examined with synthetic chemicals in a wind tunnel. Wasps were preconditioned by exposure to volatiles and feces simultaneously. A blend of four chemicals, geranyl acetate, -caryophyllene, (E)--farnesene, and indole, which are known to be specifically released from plants infested by host larvae Mythimna separata (host-induced blend), elicited a response in naive C. kariyai, but did not enhance the response after conditioning. A blend of five chemicals, (E)-2-hexenal, (Z)-3-hexen-1-ol, (Z)-3-hexen-1-yl acetate, -myrcene, and linalool, which are known to be released not only from plants infested by the host larvae, but also from artificially damaged plants or undamaged ones (unspecific blend), elicited little response in naive wasps, but significantly enhanced the wasps' response after conditioning. With a blend of the above nine chemicals, wasps could learn the blend at lower concentrations than they did in the nonspecific blend. Hence, both the host-induced and nonspecific volatile compounds appear to be important for C. kariyai females to learn the chemical cues in host location.  相似文献   

16.
The pattern of induction and the chemical structure of phenolic compounds in pear trees (Pyrus communis, cv. Conference) that were either infested by pear leaf suckers Psylla pyricola and P. pyri or mechanically damaged, or both, were studied. Chromatographic (HPLC) and mass spectral analysis performed on extracts of leaf samples collected at various time intervals from trees subjected to three treatments demonstrated the induction (and/or amplification) of a phenolic compound, identified as 3-O-trans-p-coumaroyltormentic acid (I). New mass spectrometric data on this phenolic compound are presented. HPLC revealed different peak patterns in the course of the period of Psylla infestation and the lapse of time since mechanical damage was inflicted, compared to a control tree. The new phenolic compound became apparent after 12 hr and reached the highest level 30 days after damage by pear leaf suckers. It was also observed after 24 hr at lower intensity in samples from a mechanically damaged tree and exclusively on day 30 at very low intensity in the leaf extracts from the uninfested control trees. We conclude that damage by pear leaf suckers, and to a lesser extent also mechanical damage, induce the synthesis of the new, late-eluting phenolic compound. We propose that this compound is involved in plant defense against pear leaf suckers.  相似文献   

17.
Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography–mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (d)-limonene and (E,E)-α-farnesene, differed between the two plant growth stages. Gas chromatographic–electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.  相似文献   

18.
It was previously shown that in response to infestation by spider mites (Tetranychus urticae), lima bean plants produce a volatile herbivoreinduced synomone that attracts phytoseiid mites (Phytoseiulus persimilis) that are predators of the spider mites. The production of predator-attracting infochemicals was established to occur systemically throughout the spider mitein-fested plant. Here we describe the extraction of a water-soluble endogenous elicitor from spider mite-infested lima bean leaves. This elicitor was shown to be transported out of infested leaves and was collected in water in which the petiole of the infested leaf was placed. When the petioles of uninfested lima bean leaves were placed in water in which infested leaves had been present for the previous seven days, these uninfested lima bean leaves became highly attractive to predatory mites in an olfactometer when an appropriate control of uninfested lima bean leaves was offered as alternative. The strength of this effect was dependent on the number of spider mites infesting the elicitor-producing leaves. Higher numbers of spider mites resulted in an elicitor solution with a stronger effect. In addition, spider mite density was important. The elicitor obtained from one leaf with 50 spider mites had a stronger effect on the attractiveness of uninfested leaves than the elicitor obtained from three leaves with 17 spider mites each. This suggests that the stress intensity imposed on a plant is an important determinant of the elicitor quantity. While the elicitor has a strong effect on the attractiveness of uninfested leaves, spider mite-infested leaves are still much more attractive to predatory mites than elicitor-exposed leaves. The data are discussed in the context of systemic effects in plant defense and the biosynthesis of herbivore-induced terpenoids in plants.  相似文献   

19.
Young, gregariously living larvae of the willow leaf beetles Plagiodera versicolora are known to exhibit characteristic aggregation-dispersion-reaggregation behavior and local fidelity to a host tree. In this study, we investigated whether plant volatiles induced by feeding P. versicolora larvae were involved in the reaggregation behavior. Under laboratory conditions, we conducted dual-choice bioassays and found that the first and second instars discriminated between volatiles from leaves infested by larvae and volatiles from uninfested leaves. The discriminative behavior was dependent on both the time leaves were infested and the age of discriminating larvae. First and second instars preferred odor from 1-d-infested leaves to odor from uninfested leaves, whereas third instars (solitary stage) did not discriminate between these volatile blends. Odor from 2-d-infested leaves was preferred to odor from 1-d-infested leaves by first instars, whereas odor from leaves infested for 3 d was not attractive to these very young larvae. Neither was odor of leaves infested for 1 d and then left uninfested for 1 or 2 d attractive to young larvae. The data suggest that the first and second instars use volatiles from a leaf newly infested by conspecific larvae as one of the reaggregation cues. We detected several herbivore-induced compounds in the headspace of the attractive leaves. Among those, a mixture of synthetic (E)-β-ocimene, (Z)-β-ocimene, allo-ocimene, and linalool was found to attract the larvae.  相似文献   

20.
Solid-phase microextraction and gas chromatography coupled with electroantennographic detection were used to identify volatiles from fruit of flowering dogwood, Cornus florida, as key attractants for Rhagoletis pomonella flies originating from dogwood fruit. A six-component blend containing ethyl acetate (54.9%), 3-methylbutan-1-ol (27.5%), isoamyl acetate (0.9%), dimethyl trisulfide (1.9%), 1-octen-3-ol (9.1%), and -caryophyllene (5.8%) was identified from flowering dogwood fruit that gave consistent EAD activity. In a flight tunnel assay there was no significant difference in the response of individual dogwood flies exhibiting upwind anemotactic flight to volatile extracts from dogwood fruit and the six-component synthetic mixture. Dogwood flies also displayed significantly greater levels of upwind flight to sources with the dogwood volatile blend than with previously identified volatile blends from domestic apple or hawthorn fruit. Selected subtraction assays showed that the three-component mixture of 3-methylbutan-1-ol, 1-octen-3-ol, and -caryophyllene elicited levels of upwind flight to the source equivalent to the six-component mixture. Our study adds to previous ones showing that populations of Rhagoletis pomonella flies infesting apple, hawthorn, and flowering dogwood fruit are attracted to unique mixtures of fruit volatiles, supporting the hypothesis that host fruit odors could be key traits in sympatric host shifts and establishing host fidelity within members of the Rhagoletis pomonella species complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号