首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Naboulsi  S. Mall   《Composite Structures》1998,41(3-4):303-313
Analyses of adhesively bonded composite patches to repair cracked structures have been the focus of many studies. Most of these studies investigated the damage tolerance of the repaired structure by using linear analysis. This study involves nonlinear analysis of the adhesively bonded composite patch to investigate its effects on the damage tolerance of the repaired structure. The nonlinear analysis utilizes the three-layer technique which includes geometric nonlinearity to account for large displacements of the repaired structure and also material nonlinearity of the adhesive. The three-layer technique uses two-dimensional finite element analysis with Mindlin plate elements to model the cracked plate, adhesive and composite patch. The effects of geometric nonlinearity on the damage tolerance of the cracked plate is investigated by computing the stress intensity factor and fatigue growth rate of the crack in the plate. The adhesive is modeled as a nonlinear material to characterize debond behavior. The elastic-plastic analysis of the adhesive utilizes the extended Drucker-Prager model. A detailed discussion on the effects of nonlinear analysis for a bonded composite patch repair of a cracked aluminum panel is presented in this paper.  相似文献   

2.
In this study, we investigated the fatigue crack growth behavior of cracked aluminum plate repaired with bonded composite patch especially in thick plate. Adhesively bonded composite patch repair technique has been successfully applied to military aircraft repair and expanded its application to commercial aircraft industry recently. Also this technique has been expanded its application to the repair of load bearing primary structure from secondary structure repair. Therefore, a through understanding of crack growth behavior of thick panel repaired with bonded composite patch is needed. We investigated the fatigue crack growth behavior of thick panel repaired with bonded composite patch using the stress intensity factor range (ΔK) and fatigue crack growth rate (da/dN). The stress intensity factor of patched crack was determined from experimental result by comparing the crack growth behavior of specimens with and without repair. Also, by considering the three-dimensional (3D) stress state of patch crack, 3D finite element analyses were performed to obtain the stress intensity factor of crack repaired by bonded composite patch. Two types of crack front modeling, i.e. uniform crack front model and skew crack front model, were used. The stress intensity factor calculated using FEM was compared with the experimentally determined values.  相似文献   

3.
A combined boundary element method and finite element method (BEM/FEM) is employed to investigate the fatigue crack growth behavior of cracked aluminum panels repaired with an adhesively bonded fiber-reinforced polymer (FRP) composite patch. Numerical simulation of crack growth process of a cracked aluminum panel repaired with a FRP composite patch under uniaxial cyclic loading has been carried out. The curve of crack length on unpatched side of the cracked panel versus the number of cyclic loading is determined by the numerical simulation, and it agrees well with experimental data. Furthermore, the crack front profiles of the cracked panel during fatigue crack growth and the distributions of stress intensity factors along crack fronts are also numerically simulated.  相似文献   

4.
In this study, the crack growth behaviour of an aluminium plate cracked at the tip and repaired with a bonded boron/epoxy composite patch in the case of full-width disbond was investigated. This effect is the imperfection which could result during the bonded patch of the repaired structure. Disbonds of various sizes and situated at different positions with respect to the crack tip as well as the effect of adhesive and patch thickness on repair performance were examined. An analysis procedure involving the efficient finite element modelling applied to cracked plate, adhesive and composite patch was used to compute the stress intensity factors. The crack growth rate is dominated by the stress intensity factor near the location and size of the pre-existing disbonds. The cracked plate and disbond propagation result in an increase in the patch deformation. The patch does not have an influence on the crack growth when the ratio 2a/dR exceeds 0.8.  相似文献   

5.
Fatigue crack growth behavior in a stiffened thin 2024-T3 aluminum panel repaired with one-sided adhesively bonded composite patch was investigated through experiments and analyses. The patch had three plies of unidirectional boron/epoxy composite. 2024-T3 aluminum stiffeners were riveted as well as bonded on the panel. Stiffeners were oriented in the loading direction and were spaced at either 102 mm or 152 mm with a crack centered between them. Also, un-repaired cracked panel with and without stiffeners were studied. Experiment involved tension-tension fatigue at constant amplitude with maximum stress of 120 MPa and stress ratio of 0.05. Bonded composite patch repair increased fatigue life about five-fold in the case of stiffened panels while it increased about ten fold in the case of un-stiffened panels. Fatigue life also increased with decrease of the distance between the stiffeners for both repaired and un-repaired panels. A three-dimensional finite element method was used to analyze the experiments. Residual thermal stresses, developed during patch bonding, requires the knowledge of temperature at which adhesive becomes effective in creating a bond between the structure and patch in the analysis. A simple method to estimate the effective curing temperature range is suggested in this study. The computed stress intensity factor versus measured crack growth relationships for all panel configurations were consistent and in agreement with the counterpart from the test material. Thus, the present approach provides a means to analyze the fatigue crack growth behavior of stiffened structures repaired with adhesively bonded composite patch.  相似文献   

6.
A two-dimensional finite element analysis is presented to predict crack growth behavior of cracked panels repaired with bonded composite patch. Fatigue experiments were conducted with precracked aluminum specimens of two thicknesses (1 and 6.35 mm), with and without debond, and repaired asymmetrically. Fatigue lives of thick and thin repaired panels extended four and ten times relative to unrepaired cases, respectively. The predicted fatigue crack growth rates were in agreement with experimental values at the unpatched face but not at the patched face. Thus, the present analysis provides a conservative assessment of durability and damage tolerance of repaired thin and thick panels.  相似文献   

7.
《Composites Part A》2007,38(4):1141-1148
Crack-front shape is an important parameter influencing the stress intensity factor and crack propagation rate in asymmetric repaired panels. In this study, the numerical and experimental fatigue crack growth behaviour of centrally cracked aluminum panels in mode-I condition repaired with single-side composite patches are investigated. It is shown that the crack growths non-uniformly from its initial location through the thickness of a single-side repaired panel. There is a good agreement between the propagated crack-front shapes obtained from finite element analysis with those obtained from the experiments for various repaired panels with different patch thicknesses. Furthermore, effects of plate and patch thickness on the crack growth life of the repaired panels are investigated. The experimental results show that the crack growth life of thin panels may increase up to 236% using a 16 layers patch. However, for thick panels, the life may extend about 21–35% using a 4 layers patch. Implementing of 8 and 16 layers patches has not a significant effect on the life extension of thick panels with respect to the 4 layers patch life.  相似文献   

8.
In this paper, we investigated the crack growth behaviour of cracked thin aluminium plate repaired with bonded composite patch. The finite element method is used to study the performance of the bonded composite reinforcement or repair for reducing the stress concentration at a semicircular lateral notch and repairing cracks emanating from this kind of notch. The effects of the adhesive properties and the patch size on the stress intensity factor variation at the crack tip in mode I were highlighted. The obtained results show that the stress concentration factor at the semicircular notch root and the stress intensity factor of a crack emanating from notch are reduced with the increase of the diameter and the number of the semicircular patch. The maximal reduction of stress intensity factor is about 42% and 54%, respectively, for single and double patch. However, the gain in the patch thickness increases with the increase of the crack length and it decreases when the patch thickness increases. The adhesive properties must be optimised in order to increase the performance of the patch repair or reinforcement.  相似文献   

9.
Bonded composite repair has been recognized as an efficient and economical method to extend the fatigue life of cracked aluminium components. In this work, the finite element method is applied to analyze the central crack’s behaviour repaired by a boron/epoxy composite patch. The knowledge of the stress distribution in the neighbourhood of cracks has an importance for the analysis of their repair according to the patch geometry. The effects of mechanical and geometrical properties of the patch on the variation of the stress intensity factor at the crack tip were highlighted. The obtained results show that the stress intensity factor at the repaired crack with composite patch of height 2c/3 is reduced about 5% compared to cracks repaired with octagonal patch of size c. For patch height of c/3 the reduction is about 7%. The adhesive properties must be optimised in order to increase the repair performances and to avoid the adhesive failure.  相似文献   

10.
A line spring model is developed for analyzing the fracture problem of cracked metallic plate repaired with the double-sided adhesively bonded composite patch. The restraining action of the bonded patch is modeled as continuous distributed linear springs bridging the crack faces provided that the cracked plate is subjected to extensional load. The effective spring constant is determined from 1-D bonded joint theory. The hyper-singular integral equation (HSIE), which can be solved using the second kind Chebyshev polynomial expansion method, is applied to determine the crack opening displacements (COD) and the crack tip stress intensity factors (SIF) of the repaired cracked plate. The numerical result of SIF for the crack-tip correlates very well with the finite element (FE) computations based on the virtual crack closure technique (VCCT). The present analysis approaches and mathematical techniques are critical to the successful design, analysis and implementation of crack patching.  相似文献   

11.
ABSTRACT Prestressed composite patch bonded on cracked steel section is a promising technique to reinforce cracked details or to prevent fatigue cracking on steel structural elements. It introduces compressive stresses that produce a crack closure effect. Moreover, it modifies the crack geometry by bridging the crack faces and so reduces the stress intensity range at the crack tip. Fatigue tests were performed on notched steel plate reinforced by CFRP strips as a step toward the validation of crack patching for fatigue life extension of riveted steel bridges. A crack growth induced debonded region in the adhesive‐plate interface was observed using an optical technique. Moreover, the size of the debonded region significantly influences the efficiency of the crack repair. Debond crack total strain energy release rate is computed by the modified virtual crack closure technique (MVCCT). A parametric analysis is performed to investigate the influence of some design parameters such as the composite patch Young's modulus, the adhesive thickness and the pretension level on the adhesive‐plate interface debond.  相似文献   

12.
利用真空袋压工艺, 采用单向炭纤维复合材料补片对中心裂纹铝合金板进行了单面胶接修补。测试了复合材料修补板的静态拉伸强度及修补板在拉拉疲劳过程中的裂纹扩展、界面脱粘和剩余拉伸强度等疲劳性能。结果表明, 复合材料补片胶接修补能有效地提高裂纹板的破坏强度和刚度, 降低裂纹板的疲劳裂纹扩展速率, 提高其疲劳寿命。裂纹板经单向炭纤维/ 环氧复合材料补片修补后, 其破坏强度从311. 48 MPa 提高到364. 74 MPa ,疲劳寿命从32217 次提高到77546 次。疲劳导致修补结构的粘接界面脱粘, 脱粘区域近似椭圆形; 脱粘面积随疲劳周次的增加而增加, 且增加的幅度与疲劳周次相关。   相似文献   

13.
The adhesively bonded composite patch repair technique has been used to restore or extend the service life of the cracked aluminium structural components because of its efficiency. In this study, the finite element method is used to analyse the performance of the different bonded composite patches at a semicircular lateral notch and the repair of cracks emanating from this kind of notch. The knowledge of the stress distribution in the neighbourhood of the cracks is important for the analysis of their repair according to the geometry of the patch. The effects of the mechanical and geometrical properties on the variation of the stress intensity factor in the crack tip were highlighted. The effects of the adhesive properties and of the patch size on the stress intensity factor variation at the crack tip in mode I were also highlighted. The comparison between the double and single patch repairs is also given in this study. The results obtained show that the stress intensity factor of the crack tip repaired by two composite patches, is reduced to a half compared to the one that is repaired only by one patch. The orientation of fibres possessing a higher rigidity perpendicularly to the crack propagation considerably influences the reduction of the stress intensity factor. The adhesive properties must be optimised in order to increase the performance of the patch repair or the reinforcement.  相似文献   

14.
Analysis of cracked plates with a bonded patch   总被引:5,自引:0,他引:5  
The problem of a cracked plate repaired by an adhesively bonded patch is studied. A shear spring model is adopted to reduce the problem to the analysis of a cracked plate and a patch subjected to external loads and interacting adhesive shear. While the patch is treated by the finite element method, the cracked plate is analyzed by the boundary element method, in which a special fundamental solution satisfying the boundary condition on the crack surface is introduced. The present formulation provides comparable results on the stress intensity factor of the patched crack with less computational effort.  相似文献   

15.
Adhesively bonded patch repairs for cracked finite sheets are analysed by the boundary element method. The interaction between the plate and the patch on a repaired sheet is modelled as a distribution of forces which include in-plane, out-of-plane and two moment body forces. The coupled boundary integral formulations of shear deformable plate (Mindlin theory) and two-dimensional plane stress elasticity are presented. Stress intensity factors, three for the bending problem and two for the membrane problem, are evaluated from crack opening displacements. Several examples are presented to demonstrate the accuracy and efficiency of the proposed method. Comparison with two-dimensional solutions demonstrate the significance of the bending loads on the stress intensity factors.  相似文献   

16.
Adhesively bonded composite patch repair has been widely used to restore or extend the service life of cracked structural components due to its effectiveness to mechanical repair technique. In this work, the finite element method is applied to analyse the performance of the bonded composite patch for repairing cracks emanating from semicircular notch root in pure mode II. The stress intensity factor was computed at the crack tip repaired using a boron/epoxy patch for different orientation of fibers, taking into account the disbond. In this case, the increase of a patch thickness reduces the negative effects of disbond. When this effect is significant between the patch and the plate, it reduces the repair effectiveness. The maximum reduction obtained by using a boron/epoxy of fibers in the x-direction is of the order of 20% more important compared to a patch having its fibers in the y-direction. The stress intensity factor exhibits an asymptotic behaviour as the disbond size increases.  相似文献   

17.
A combined analytical and numerical study of an isotropic cracked plate that was repaired by using a bonded composite patch was conducted. The analytical work was based on Rose's equations, whereas for the numerical investigation a three-dimensional finite element analysis was implemented. A number of cracked plates with different crack lengths and overall dimensions of the composite repair were considered. The composite patch was made of unidirectional laminates with different stacking sequences. Both, one- and two-sided patches were analysed. Results are presented for the stress intensity factor in the patched crack and the maximum stress reinforcement stress and adhesive strain. It was found that for the case of a two-sided reinforcement the results obtained by both methods were in good agreement. However, for the case of a single reinforcement the accuracy of the analytical method decreased due to the tendency to out-of-plane bending as a result of bonding a reinforcing patch to only one face of a plate, which is ignored in the analysis.  相似文献   

18.
This paper concerns a numerical study by the finite element method of the cracked structure repaired by single and double bonded composite patches. The stress intensity factor is used as fracture criteria. The obtained results showed the advantage of the double patch compared to single on the reduction of the stress intensity factor at the crack tip. The effects of the properties of the plate and the patch and the adhesive on the beneficial effect of the double patch are highlighted. The adhesive properties must be optimised in order to increase the advantage of the double patch and to avoid the adhesive failure. The patch properties have a significant effect on the beneficial effects of the double symmetric patch.  相似文献   

19.
An extended finite element method (XFEM) is developed to study fracture parameters of cracked metal plates and tubes that are repaired on top of the crack with a composite patch. A MATLAB® stand‐alone code is prepared to model such structures with eight‐noded doubly curved shell elements in the XFEM framework. Crack trajectory studies are performed for a diagonally cracked panel under fatigue loading. Verification studies are investigated on different shell type structures such as a cracked spherical shell and cracked cylindrical pipe with different crack orientations. The effects of using patch repairs with different fibre orientations on the reduction of stress intensity factors (SIFs) is also studied which can be useful for design purposes. XFEM is selected as any crack geometry can be embedded in the finite element mesh configuration with no need to coincide the crack geometry with meshed elements and so re‐meshing with fine mesh generation is not needed in the current method.  相似文献   

20.
Repaired panels with composite patches subjected to fatigue loading may fail due to the progressive debonding between the composite patch and aluminium panel. The objective of this paper is to study the initiation and propagation of a possible fatigue debonding in the adhesive layer while the crack also growths in the panel for single-side repaired aluminium panels. For this purpose three dimensional finite elements method with a thin layer solid like interface element is employed. Fracture mechanics approach is used for the analysis of crack growth in aluminium panel and the interface elements with fatigue constitutive law for mixed mode debonding growth in the adhesive layer. A user element routine and a damage model material routine were developed to include the interface element and to simulate the initiation and propagation of damage in adhesive layer under cyclic loading. It is shown that, the debonding propagation and crack growth rate of the repaired panels depend on the composite patch material and interface bonding properties significantly. It is also shown that using of patch material with higher elastic module leads to the faster damage or debonding growth in the adhesive layer during the fatigue loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号