首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
3.
To define early molecular targets of progestin action, the differential display technique was used to identify genes with altered levels of expression in T-47D breast cancer cells treated with the synthetic progestin ORG 2058 for 3 h. PRG1 was first isolated as a 200-bp cDNA clone and its progestin regulation confirmed by Northern analysis. Cloning of the complete coding region of PRG1 revealed that it shared a high degree of amino acid sequence identity with isoforms of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from several tissues and species. Expression of PRG1 mRNA was observed in several normal breast epithelial and breast cancer cell lines and in a variety of human tissues, with highest expression in the breast, aorta, and brain. In T-47D cells, PRG1 mRNA was rapidly and transiently induced by progestins, expression peaking between 2 and 4 h and returning to control levels by 12 h. Progestin-induced increases in PRG1 mRNA were inhibited by the progestin antagonist RU 486 and occurred via the progesterone receptor. Progestin induction of PRG1 mRNA was also inhibited by actinomycin D but not by cycloheximide. PRG1 is therefore a novel human gene that is directly regulated by progestins via the progesterone receptor.  相似文献   

4.
Neoplastic events are marked by uncontrolled cell proliferation. One major focus of cancer research has been to identify treatments that reduce or inhibit cell growth. Over the years, various compounds, both naturally occurring and chemically synthesized, have been used to inhibit neoplastic cell proliferation. Two such oncostatic agents, melatonin and retinoic acid, have been shown to suppress the growth of hormone-responsive breast cancer. Currently, separate clinical protocols exist for the administration of retinoids and melatonin as adjuvant therapies for cancer. Using the oestrogen receptor (ER)-positive MCF-7 human breast tumour cell line, our laboratory has studied the effects of a sequential treatment regimen of melatonin followed by all-trans retinoic acid (atRA) on breast tumour cell proliferation in vitro. Incubation of hormonally responsive MCF-7 and T47D cells with melatonin (10(-9) M) followed 24 h later by atRA (10(-9) M) resulted in the complete cessation of cell growth as well as a reduction in the number of cells to below the initial plating density. This cytocidal effect is in contrast to the growth-suppressive effects seen with either hormone alone. This regimen of melatonin followed by atRA induced cytocidal effects on MCF-7 cells by activating pathways leading to apoptosis (programmed cell death) as evidenced by decreased ER and Bcl-2 and increased Bax and transforming growth factor beta 1 (TGF-beta1) expression. Apoptosis was reflected morphologically by an increase in the number of lysosomal bodies and perinuclear chromatin condensation, cytoplasmic blebbing and the presence of apoptotic bodies. The apoptotic effect of this sequential treatment with melatonin and atRA appears to be both cell and regimen specific as (a) ER-negative MDA-MB-231 and BT-20 breast tumour cells were unaffected, and (b) the simultaneous administration of melatonin and atRA was not associated with apoptosis in any of the breast cancer cell lines studied. Taken together, the results suggest that use of an appropriate regimen of melatonin and atRA should be considered for preclinical and clinical evaluation against ER-positive human breast cancer.  相似文献   

5.
6.
Retinoids are promising agents for cancer chemoprevention and therapy. Nuclear retinoic acid receptors (RARs; RARalpha, -beta, and -gamma) and retinoid X receptors (RXRs; RXRalpha, -beta, and -gamma) are thought to mediate most of retinoids' effects on cell growth and differentiation. Because the majority of human non-small cell lung carcinoma (NSCLC) cell lines are resistant to all-trans-retinoic acid, we searched for more potent retinoids. Therefore, we examined the effects of 37 natural and synthetic retinoids that exhibit specific binding to and transactivation of individual RARs or RXRs on the proliferation of eight human NSCLC cell lines. All of these cells expressed mRNAs of the three RXRs; however, they expressed varying levels of RARalpha and RARgamma, and only three of the eight cell lines expressed RARbeta mRNA. Cellular retinoic acid-binding proteins (CRABPs) I and II were detected in one and three of the eight cell lines, respectively. Only 8 of the 37 retinoids exhibited growth-inhibitory activity (IC50, < 10 microM) against at least two of the eight NSCLC cell lines. The active retinoids included one (TD550) of five RARalpha-selective, one (Ch55) of three RARbeta-selective, three (CD437, CD2325, and SR11364) of six RARgamma-selective, and one (CD271) of four RARbeta/gamma-selective retinoids. The potency of these retinoids was low (IC50, > 1 microM), except for CD437, which was very potent (IC50, 0.1-0.5 microM). The six RXR-selective retinoids were mostly inactive even at 10 microM. However, combinations of RAR-selective and RXR-selective retinoids exhibited additive effects. There appeared to be no simple correlation among the histological type of the NSCLC (adeno- or squamous), the levels of nuclear receptors or CRABPs, and the response of the cells to the growth-inhibitory effects of retinoids. Nevertheless, in contrast with former studies with natural retinoids, these results suggest that several synthetic retinoids do exhibit inhibitory activity against NSCLC cells, and some of them may be useful clinically.  相似文献   

7.
8.
9.
The human breast carcinoma cell line T47D is known to express high-affinity calcitonin receptors (CTRs). PCR amplification of the CTR cDNA from T47D mRNA resulted in the identification of two different cDNAs that encode distinct receptor isoforms, h alpha CTR and h beta CTR. The two cDNAs are identical except that the h alpha CTR cDNA contains a 48 bp insert sequence that encodes a 16 amino acid domain in the first cytosolic loop of the receptor. Stable transfection of each receptor cDNA into murine erythroleukaemia (MEL) cells resulted in the expression of receptors with high affinity for radiolabelled salmon calcitonin (h alpha CTR Kd 0.09 nM, h beta CTR Kd 0.12 nM). Ligand competition binding studies did not reveal any significant pharmacological difference between the receptor isoforms. In transfected MEL cells and COS-1 cells the h beta CTR isoform was expressed at tenfold higher levels than the h alpha CTR. A reporter gene assay that monitored the coupling of CTR to adenylate cyclase by increases in beta-galactosidase activity indicated that both receptors were able to stimulate cyclic AMP production in response to ligand binding.  相似文献   

10.
11.
We recently reported the successful use of retinoic acids in the treatment of refractory lymphoma. The biologic determinants predicting response of lymphomas to retinoic acid remain unknown. This study was conducted to explore this question using in vitro models. Sensitivity of representative lymphoma cells to 13-cis-retinoic acid was determined. Sensitive and resistant cell lines were then compared for their baseline and/or retinoic-acid-regulated expression of total cellular retinoic acid binding protein, retinoic acid receptor (RAR)-alpha, RAR-beta, RAR-gamma mRNA, retinoid X receptor (RXR)-alpha, RXR-beta, RXR-gamma mRNA, transforming growth factor (TGF)-beta 1 and TGF-beta 1 receptors, and Fas (Apo-I) mRNA. The results showed that four of five T, two of three Hodgkin's, and none of six B cell lymphoma cell lines were sensitive (IC30 < 1.5 mmol/L) to 13-cis-retinoic acid. Further analyses revealed several of the above-mentioned parameters may be relevant to retinoic acid sensitivity. Baseline expression of TGF-beta 1 receptors was present in all of the five sensitive cell lines examined, but in only one of the four resistant cell lines. The correlation of Fas expression and retinoic acid sensitivity was good for B cell lines, but not apparent for T cell or Hodgkin's cell lines. On exposure to retinoic acid, an immediate and prolonged upregulation of RAR-alpha mRNA expression, lasting for more than 12 hours, occurred in all sensitive cell lines, but only minimal or transient induction was seen in resistant cells. Together, these data suggested that; 1) retinoic acid has a preferential effect on T cell and Hodgkin's lymphoma cell lines; 2) autoregulation of RAR-alpha by retinoic acids, and the presence of TGF-beta 1 receptors may be relevant to the response of lymphomas to treatment with retinoic acids.  相似文献   

12.
13.
14.
Recent studies have suggested that the active metabolite of vitamin D3, 1,25-dihydroxyvitamin D3, can inhibit the growth and/or induce the differentiation of a variety of cell types and that these characteristics might be useful in the treatment of some cancers. Retinoids also promote the differentiation and inhibit the growth of some cells. That the vitamin D receptor acts as a heterodimer with the retinoid X receptor (RXR) suggests that there may be functional interactions between 1,25-dihydroxyvitamin D3 and retinoids. In this study, we show that the combination of 1,25-dihydroxyvitamin D3 and 9-cis retinoic acid synergistically inhibits the growth of LNCaP prostate cancer cells. That this effect is mediated by RXR rather than retinoic acid receptors was shown using RXR- and retinoic acid receptor-specific ligands. The vitamin D3 analog, EB1089, inhibited growth more effectively than 1,25-dihydroxyvitamin D3 and also acted synergistically with 9-cis-retinoic acid. These treatments caused cells to accumulate in the G1 phase of the cell cycle, suggesting that 1,25-dihydroxyvitamin D3 can regulate one or more factors critical for the G1/S transition.  相似文献   

15.
The expression and stability of the estrogen receptor (ER) is the result of a complex process that is modulated by estrogens and antiestrogens. Regulation of the steady-state ER mRNA and protein levels in breast cancer cells appears to be the result of either of two distinct regulatory mechanisms. Estrogen exposure causes a rapid down-regulation of the steady-state level of ER mRNA and protein in model I regulation, as exemplified by the MCF-7:WS8 cell line. Conversely, in model II regulation, as observed in the T47D:A18 cell line, estrogen exposure causes an increase in the steady-state ER mRNA level and a maintenance of the ER protein level. In both these cell lines, the nonsteroidal antiestrogen 4-hydroxytamoxifen has little effect on the mRNA level but causes a net accumulation of the ER protein over time. In contrast, the pure antiestrogen ICI 182,780 causes a dramatic reduction of the ER protein in both the MCF-7:WS8 and T47D:A18 cell lines. This loss has little effect upon the ER mRNA level in the MCF-7:WS8 cells but leads to a decline in the ER mRNA in the T47D:Al8 cells. The estrogen-independent MCF-7:2A cell line, which has adapted to growth in estrogen free media, expresses two forms of the ER, a wild-type Mr66,000 ER and a mutant Mr77,000 ER (ER77). ER77 is the product of a genomic rearrangement resulting in a tandem duplication of exons 6 and 7 (J. J. Pink et al, Nucleic Acids Res., 24:962-969,1996). This exon duplication has abolished ligand binding by this protein. Here we demonstrate that the loss of ligand binding has eliminated the effects of 4-OHT and ICI 182,780 on the steady-state ER77 protein level. However, in the MCF-7:2A cells, antiestrogens affect the wild-type ER protein in the same manner as observed in the MCF-7:WS8 and T47D:A18 cells. Estrogen regulates the ER mRNA and wild-type ER and ER77 proteins in the MCF-7:2A cells in the same manner as observed in the MCF-7:WS8 cells. Interestingly, treatment of the MCF-7:2A cells with ICI 182,780 causes a slight increase in ER mRNA, which is reflected in a net increase in the ER77 protein but a dramatic decrease in the wild-type ER. The models presented here describe the response of two human breast cancer cell lines in short-term studies. These distinct regulation pathways are predictive of the response of these cell lines to long-term estrogen deprivation. This study illustrates two alternative regulation pathways that are present in ER-positive, estrogen-dependent breast cancer cells. This variable response highlights the diversity of responses potentially present in the heterogeneous cell populations of clinically observed breast cancer.  相似文献   

16.
BACKGROUND: The Raf-1 kinase, a 72-kDa cytoplasmic serine-threonine kinase, plays a central role as a second messenger in signal transduction. After ligand binding to a variety of transmembrane tyrosine kinase growth factor receptors including epidermal growth factor (EGF) receptor, the 72-kDa kinase is activated through phosphorylation to a 74-kDa phosphoprotein. The Raf-1 kinase is constitutively activated in many transformed cells either directly, by mutations within its amino-terminus regulatory region, or indirectly, due to overstimulation by autocrine growth factors or activated proximal oncogenes. The role of Raf-1 kinase in breast cancer has not been studied. METHODS: To investigate the role of Raf-1 kinase expression and its activation in breast cancer, we studied three human breast cancer cell lines expressing varying amounts of EGF receptor to determine the level of Raf-1 protein and the proportion expressed in the higher molecular weight form. Effects of serum starvation and stimulation with EGF on the Raf-1 protein were studied in T47D, BT474, and MDA-MB231 cells by precipitation of cell lysates with an anti-Raf-1 antibody followed by immunoblotting. [3H]Thymidine incorporation by these cells after EGF stimulation was also determined as a measure of DNA synthesis. RESULTS: In all three breast cancer cell lines studied, the Raf-1 protein was identified in a 70- and a 74-kDa form. The level of Raf-1 was similar in all three cell lines and appeared unrelated to EGF receptor expression on the cell surface. The majority of the protein was found in the 74-kDa form even after serum starvation. A minor shift from the lower to higher molecular weight form of Raf-1 was apparent in cells treated with EGF, and increased [3H] thymidine incorporation could be demonstrated in two of the cell lines after EGF stimulation. CONCLUSION: Baseline expression of the 74-kDa or activated form of the Raf-1 kinase appeared to be elevated in the breast cancer cells studied, indicating constitutive activation. Further investigation into the role of Raf-1 protein in the pathogenesis of breast cancer is indicated.  相似文献   

17.
Retinoids constitute a very promising class of agents for the chemoprevention or treatment of breast cancer. These retinoids exert their biological activity through two distinct classes of retinoic acid (RA) receptors (R), the RAR isotypes (alpha, beta, and gamma) and the three RXR isotypes (alpha, beta, and gamma) and their numerous isoforms which bind as RXR/RAR heterodimers to the polymorphic cis-acting response elements of RA target genes. With respect to these numerous receptor sub-types, the retinoid-induced effects at the biological level include marked modifications with respect to both cell proliferation and cell death (apoptosis), and also in the induction of differentiation processes. The present study aims to characterize the effect which four retinoids (TTNPB, 9-cis-RA, LGD 1069, 4-HPR) with distinct RAR/RXR binding properties induced on various in vitro and in vivo mouse and human breast cancer models. The experiments with the retinoids were carried out in comparison with the anti-estrogen tamoxifen and the anti-progestagen RU-486 compounds. The results show that the 6 compounds under study were markedly more efficient in terms of growth inhibition in the human T-47D cell line when maintained under anchorage-independent culture conditions than when maintained under anchorage-dependent ones. While RU-486 exhibited a weak statistically significant (p < 0.05) influence on the growth of the T-47D stem cells, tamoxifen had a marked inhibitory influence on the growth of these cells. Of the four retinoids, 4-HPR was the least effective since the lowest doses tested (1 and 0.1 nM) exhibited no statistically (p > 0.05) significant influence on the growth of the stem cells. The most efficient retinoid was TTNPB. It was only at the highest dose (10 microM) that tamoxifen and RU-486 showed a weak inhibitory influence on the growth of the T-47D non-stem cells while all 4 retinoids exerted a significant inhibitory influence on the growth of these non-stem cells, with 4-HPR being the most efficient (P < 0.001) at the highest dose, but ineffective (P > 0.05) at the lowest. Tamoxifen and TTNPB were tested in vivo on hormone-sensitive (HS) and hormone-insensitive (HI) strains of the MXT murine mammary carcinoma. While TTNPB appeared to be equally efficient in terms of growth inhibition in both MXT-HS and MXT-HI models, tamoxifen had only a marginal inhibitory influence on the growth of the MXT-HI strain but did inhibit growth in the case of the MXT-HS one. TTNPB was markedly more efficient than tamoxifen in terms of both inhibiting the cell proliferation level (measured by means of computer-assisted microscopy applied to Feulgen-stained nuclei, a method which enables the percentage of cells in the S phase of the cell cycle to be determined) and triggering cell death (measured by means of the determination of the transglutaminase activity) in both the MXT-HI and MXT-HS models. The very significant TTNPB-induced inhibition of the macroscopic MXT-HS growth rate relates to the triggering of cell death (apoptosis) rather than to an inhibition of cell proliferation. All these results clearly indicate that retinoids are very efficient agents against breast cancer, at least as efficient as tamoxifen.  相似文献   

18.
Retinoic acid inhibits proliferation and steroid receptor gene expression in human breast cancer cell lines. Retinoic acid receptors (RAR)alpha, -beta, and -gamma are expressed in these cells and the expression of RAR alpha is significantly greater in estrogen receptor (ER)-positive cells. This study was undertaken to determine whether the same relationship between RAR alpha and ER gene expression was present in human breast cancers and to explore the possibility that the higher level of RAR alpha in ER-positive cells was due to estrogen regulation of RAR alpha gene expression. RAR alpha and ER mRNA expression were determined by Northern blot analysis in 116 primary breast tumors; 94 (81%) tumors were ER-positive and of these 87 (93%) were also RAR alpha-positive. The coexpression of ER and RAR alpha was statistically significant (P = 0.0052 by chi 2 contingency analysis). There was also a positive correlation (by linear regression analysis) between the levels of expression of ER and RAR alpha mRNA (r2 = 0.251, P = 0.0001), which confirmed the relationship previously documented in breast cancer cell lines and suggested that RAR alpha expression may be modulated in breast cancer in vivo by estrogens acting via the ER. The ability of estradiol to regulate RAR alpha gene expression was examined in vitro using T-47D cells which had been rendered sensitive to estrogen by repeated passage in steroid-depleted medium. Estradiol increased RAR alpha gene expression, but not that of RAR beta or RAR gamma, in a concentration-dependent manner, with the effect being maximal at 10(-10) M and less marked at higher concentrations. The effect was rapid, being detectable 1 h after and maximal 6 h after treatment with 10(-10) M estradiol. Co-treatment of cells with estradiol and antiestrogens (tamoxifen or ICI 164384, 4 x 10(-7) M for 6 h) inhibited the estradiol induction of RAR alpha gene expression, demonstrating that the effect was ER mediated. The estradiol sensitivity of the effect was underscored by the demonstration that addition of untreated serum to cells growing under steroid-depleted conditions was sufficient to induce maximal RAR alpha gene expression. This effect was totally abolished by addition of ICI 164384. In summary, the demonstration that estradiol increased RAR alpha mRNA levels in breast cancer cells supports the hypothesis that the correlation between RAR alpha and ER gene expression in breast tumors and breast cancer cell lines is due to estradiol augmentation of RAR alpha gene expression.  相似文献   

19.
This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34-and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested.  相似文献   

20.
The sex steroid hormones and PRL interact synergistically to control the neoplastic growth of the mammary gland. The basis for this hormonal synergy is unknown, but may involve cellular coexpression of the sex steroid and PRL receptors, coupled with receptor cross-regulation. To examine this hypothesis the expression of the sex steroid and PRL receptors was examined in 20 human breast cancer cell lines and 123 primary breast cancers. Regulation of sex steroid receptors by PRL and of the PRL receptor by sex steroids was examined in T-47D and MCF-7 breast cancer cells. Northern analysis of the breast cancer cell lines and tumors indicated that the PRL receptor and the sex steroid receptors were coexpressed. The level of PRL receptor expression in the breast cancer cell lines was linearly related to that of the estrogen and progesterone receptors, but not to that of the androgen receptor. In MCF-7 and T-47D cells, acute treatment with progestins and androgens and long term treatment with estrogens increased PRL receptor levels. Analysis of sex steroid receptor messenger ribonucleic acid and binding activity showed that acute PRL treatment produced a time- and concentration-dependent increase in progesterone receptor and a decrease in androgen receptor. These results indicate that receptors for sex steroids and PRL are coexpressed and are cross-regulated, providing a potential mechanism for the observed synergy among estrogen, progesterone, and PRL in the control of tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号