首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Oxygen carrier particles of CuO/ZrO2 were reacted with petroleum coke using chemical-looping with oxygen uncoupling (CLOU). The fuel was burnt in gas-phase oxygen released from the oxygen carrier particles during the fuel oxidation. The particles were then regenerated in 5-21% oxygen. In this process, the carbon dioxide from the combustion is inherently separated from the rest of the flue gases without the need for an energy intensive air separation unit. Copper oxide has thermodynamic characteristics that make it suitable as an oxygen carrier in CLOU. Particles were prepared by freeze granulation and were exposed cyclically with petroleum coke and oxygen in a laboratory fluidized bed reactor of quartz. The reaction temperature and oxygen concentration during the oxidation were varied. The average conversion rate of petroleum coke was a function of temperature and varied between 0.5%/s and 5%/s in the set-point temperature interval 885-985 °C. The conversion rate is considerably higher than rates obtained with the same fuel using iron-based oxygen-carrier in chemical-looping combustion. As for the regeneration with oxygen, the reduced particles reacted at low oxygen concentrations, with a considerable part of the reaction occurring near the thermodynamic equilibrium.  相似文献   

2.
The chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) processes are novel solutions for efficient combustion with direct separation of carbon dioxide. These processes use a metal oxide as an oxygen carrier to transfer oxygen from an air to a fuel reactor, where the fuel reacts with the solid oxygen carrier. When utilizing coal in CLC, the oxygen carrier particles could be affected through interaction with the ash-forming mineral matter found in coal, causing deactivation and/or agglomeration. In this work, possible interactions between minerals commonly encountered in coal and several promising oxygen carriers that are currently under investigation for their use in CLC are studied by both experiment and thermodynamic equilibrium calculations. Possible interaction was studied for both highly reducing and oxidizing conditions at 900 °C. Under highly reducing conditions pyrite was found to have by far the most deteriorating effect on the oxygen carrier particles, as the sulfur in the pyrite reacted with the oxygen carrier to form sulfides. Quartz and clay minerals were found to have a rather low influence on the oxygen carriers. Out of the oxygen carriers investigated, CuO/MgAl2O4 and the Mn3O4/ZrO2 oxygen carriers tended to be quite reactive towards mineral matter whereas ilmenite has been shown to be the most robust oxygen carrier. Although sulfur can clearly deactivate Ni, Cu and Mn based oxygen carriers under sub-stoichiometric conditions, when the fuel is converted fully to CO2 and H2O, sulfides are only expected for Ni-based oxygen carriers.  相似文献   

3.
煤的化学链燃烧是清洁煤燃烧的重要技术之一。化学链中载氧体的使用可以避免煤和空气直接接触,从而避免氮氧化物等污染物的产生并提高能量转化效率。一般来说,煤的化学链燃烧有2种反应途径:煤气化化学链燃烧和氧解耦化学链燃烧;不同反应途径将极大影响载氧体组分以及结构设计。详细论述了2015-2020年煤化学链燃烧中固态金属载氧体的研究进展,包括铁基、锰基、铜基、镍基、硫酸钙以及其他复合金属载氧体。总结了不同金属载氧体的优缺点、反应路径、气-固和固-固反应机理、金属与载体的相互作用以及载氧体失活原理。铁基载氧体被广泛应用于气化化学链燃烧中,但单一铁基载氧体的反应速率较低。适量添加碱金属或碱土金属可以提升载氧体的反应活性。锰基载氧体在化学链燃烧中具有两面性:一方面可以在高温缺氧气氛中释放气态氧,另一方面也可以与还原性气体发生气-固反应。通过使用惰性载体以及碱金属添加剂可以提高锰基载氧体的机械强度和氧解耦能力。含铜载氧体具有出色的氧解耦能力和反应活性而被广泛关注,然而铜及其氧化物低熔点所带来的金属聚集导致载氧体的失活问题亟需克服。研究发现使用铁、锰和铜矿石制得的载氧体具有良好的反应性能。硫酸钙载氧体具有较好的反应活性,但煤的化学链燃烧时潜在的二氧化硫和硫化氢副产物需要引起重视。镍基载氧体虽然在煤的化学链燃烧中反应性能较好,但硫毒化、成本较高和环保性能不佳等缺点导致近年来镍基载氧体的研究较少。新型双金属或多金属载氧体可以同时结合2种金属的反应特性,从而显著提高载氧体的整体反应活性。基于载氧体的研究现状,对未来的发展方向提出了4点建议:结合2种煤的化学链燃烧机理设计新型氧解耦辅助化学链燃烧载氧体;发展新型材料和金属组分的载氧体;利用冶金工业废料制得载氧体;开发新型结构的载氧体。  相似文献   

4.
Paul Cho  Tobias Mattisson 《Fuel》2004,83(9):1215-1225
For combustion with CO2 capture, chemical-looping combustion (CLC) with inherent separation of CO2 is a promising technology. Two interconnected fluidized beds are used as reactors. In the fuel reactor, a gaseous fuel is oxidized by an oxygen carrier, e.g. metal oxide particles, producing carbon dioxide and water. The reduced oxygen carrier is then transported to the air reactor, where it is oxidized with air back to its original form before it is returned to the fuel reactor. The feasibility of using oxygen carrier based on oxides of iron, nickel, copper and manganese was investigated. Oxygen carrier particles were produced by freeze granulation. They were sintered at 1300 °C for 4 h and sieved to a size range of 125-180 μm. The reactivity of the oxygen carriers was evaluated in a laboratory fluidized bed reactor, simulating a CLC system by exposing the sample to alternating reducing and oxidizing conditions at 950 °C for all carriers except copper, which was tested at 850 °C. Oxygen carriers based on nickel, copper and iron showed high reactivity, enough to be feasible for a suggested CLC system. However, copper oxide particles agglomerated and may not be suitable as an oxygen carrier. Samples of the iron oxide with aluminium oxide showed signs of agglomeration. Nickel oxide showed the highest reduction rate, but displayed limited strength. The reactivity indicates a needed bed mass in the fuel reactor of about 80-330 kg/MWth and a needed recirculation flow of oxygen carrier of 4-8 kg/s, MWth.  相似文献   

5.
The feasibility of using three different solid fuels in chemical-looping combustion (CLC) has been investigated using NiO as oxygen carrier. A laboratory fluidized-bed reactor system for solid fuel was used, simulating a chemical-looping combustion system by exposing the sample to alternating reducing and oxidizing conditions. In each reducing phase 0.2 g of fuel was added to the reactor containing 20 g oxygen carrier. The experiments were performed at 970 °C. Compared to previously published results with other oxygen carriers the reactivity of the used Ni-particles was considerably lower for the high-sulphur fuel and higher for the low-sulphur fuel. Much more unconverted CO was released and the fuel conversion was much slower for high-sulphur fuel such as petroleum coke, suggesting that the nickel-based oxygen carrier was deactivated by the presence of sulphur. The NiO particles also showed good reactivity with methane and a syngas mixture of 50% H2 and 50% CO. For all experiments the oxygen carrier showed good fluidizing properties without any signs of agglomeration.  相似文献   

6.
In the chemical looping with oxygen uncoupling (CLOU) process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combustion rate of carbon is faster than the decoupling rate of oxygen carrier (OC).Hence,high tem-perature tolerance and rapid oxygen release rate of CuO modified by three different ores were investi-gated in this study.The kinetics analysis of oxygen decoupling with Cu-based oxygen carriers was also evaluated.Results showed that CuO modified by chrysolite had faster oxygen release rate than that of CuO.Limestone showed obvious positive effect on the oxidization process.The selected OCs could keep stable in at least 20 cycles,for about 1200 min.Shrinking core model (SCM) fitted well for the decoupling process in the temperature range of 1123-1223 K.Reduction rate kinetic information may aid in the development of chemical looping with oxygen uncoupling (CLOU) technologies during reactor design and process modeling.Ternary doped copper oxide with chrysolite and limestone could improve the reactivity of CuO in decoupling and coupling process and also improve the high temperature tolerance.  相似文献   

7.
A. Abad  T. Mattisson  A. Lyngfelt  M. Rydén 《Fuel》2006,85(9):1174-1185
Chemical-looping combustion (CLC) is a method for the combustion of fuel gas with inherent separation of carbon dioxide. This technique involves the use of two interconnected reactors. A solid oxygen carrier reacts with the oxygen in air in the air reactor and is then transferred to the fuel reactor, where the fuel gas is oxidized to carbon dioxide and water by the oxygen carrier. Fuel gas and air are never mixed and pure CO2 can easily be obtained from the flue gas exit. The oxygen carrier is recycled between both reactors in a regenerative process. This paper presents the results from a continuously operating laboratory CLC unit, consisting of two interconnected fluidized beds. The feasibility of the use of a manganese-based oxygen carrier supported on magnesium stabilized zirconia was tested in this work. Natural gas or syngas was used as fuel in the fuel reactor. Fuel flow and air flow was varied, the thermal power was between 100 and 300 W, and the air ratio was between 1.1 and 5.0. Tests were performed at four temperatures: 1073, 1123, 1173 and 1223 K. The prototype was successfully operated at all conditions with no signs of agglomeration or deactivation of the oxygen carrier. The same particles were used during 70 h of combustion and the mass loss was 0.038% per hour, although the main quantity was lost in the first hour of operation. In the combustion tests with natural gas, methane was detected in the exit flue gases, while CO and H2 were maintained at low concentrations. Higher temperature or lower fuel flows increases the combustion efficiency, which ranged from 0.88 to 0.99. On the other hand, the combustion of syngas was complete for all experimental conditions, with no CO or H2 present in the gas from the fuel reactor.  相似文献   

8.
Existing energy generation technologies emit CO2 gas and are posing a serious problem of global warming and climate change. The thermodynamic feasibility of a new process scheme combining chemical looping combustion (CLC) and combined reforming (CR) of propane (LPG) is studied in this paper. The study of CLC of propane with CaSO4 as oxygen carrier shows thermodynamic feasibility in temperature range (400-782.95 °C) at 1 bar pressure. The CO2 generated in the CLC can be used for combined reforming of propane in an autothermal way within the temperature range (400-1000 °C) at 1 bar pressure to generate syngas of ratio 3.0 (above 600 °C) which is extremely desirable for petrochemical manufacture. The process scheme generates (a) huge thermal energy in CLC that can be used for various processes, (b) pure N2 and syngas rich streams can be used for petrochemical manufacture and (c) takes care of the expensive CO2 separation from flue gas stream and CO2 sequestration. The thermoneutral temperature (TNP) of 702.12 °C yielding maximum syngas of 5.98 mol per mole propane fed, of syngas ratio 1.73 with negligible methane and carbon formation was identified as the best condition for the CR reactor operation. The process can be used for different fuels and oxygen carriers.  相似文献   

9.
Batch experiments were conducted in a 10 kWth chemical-looping combustor for solid fuels using ilmenite, an iron titanium oxide, as the oxygen carrier with two solid fuels: a petroleum coke from Mexico and a bituminous coal from South Africa. The purpose of these batch tests was to attain detailed information on fuel conversion, complementary to previous continuous operation of the unit. At steady-state, a fuel batch of typically 25 g was introduced in the fuel reactor and gas concentrations were measured at the outlet of both air and fuel reactors. The fuel reactor was fluidized with steam and the amount of bed material was typically 5 kg. The fuel introduced devolatilizes rapidly while the remaining char is gasified and the resulting syngases H2 and CO react with the oxygen carrier. Operation involved testing at different fuel reactor temperatures from 950 to 1030 °C, and investigation of the influence of particle circulation between air and fuel reactors.The fuel conversion rate was increased at higher temperature: at 950 °C the instantaneous rate of conversion for petroleum coke averaged at 17.4%/min while at 1030 °C, the value was 40%/min. For the much more reactive South African coal, the averaged rate at 970 °C was 47%/min and increased to 101%/min at 1000 °C. For petroleum coke testing with particle circulation, the oxygen demand - defined as oxygen lacking to fully convert the gases leaving the fuel reactor - was typically 12-14% for the gasified char including H2S, in line with previous experiments with the same unit and fuel. If only syngases are considered, the oxygen demand for char conversion was 8.4-11%. Similar or even lower values were seen for the char of South African coal. This is in line with expectations, i.e. that it is possible to reach fairly high conversion, although difficult to reach complete gas conversion with solid fuel. It was also seen that the volatiles pass through the system essentially unconverted, an effect of feeding the fuel from above. Moreover, the oxygen demand for char conversion decreased with increasing temperature. Finally, the CO2 capture - defined as the proportion of gaseous carbon leaving the fuel reactor to total gaseous carbon leaving the system - decreased at higher particle circulation and a correlation between capture and circulation index was obtained.  相似文献   

10.
Chemical-looping combustion (CLC) is a promising technology for CO2-capture for storage or reuse as a method to mitigate CO2 emissions from the use of fossil fuels. In a CLC system the oxygen carrier is of great importance. Environmentally sound and low cost materials seem to be preferable especially for CLC of solid fuels. The natural occurring ore ilmenite has already been the target of different studies in order to work out its feasibility as oxygen carrier for different fuels. The initial part of this work is a screening of five commercial available ilmenite minerals as oxygen carrier, crushed and sieved to 125–180 μm. The screening includes an examination of the sulfur released during the first heat up and the activation of the oxygen carrier, indicated by the fuel conversion using alternating reduction (syngas 50 vol.% CO in H2) and oxidation conditions (10 vol.% O2 in N2). The five first cycles were carried out at 850 °C to avoid initial agglomeration whereas the main activation cycles have been performed at 950 °C in a tubular quartz reactor under fluidized bed conditions. From these experiments it is concluded that rock ilmenites are preferable as oxygen carriers since they revealed an improved fuel conversion, although offering a higher sulfur content, which is released during the initial heat up.  相似文献   

11.
Chemical-looping technologies have obtained widespread recognition as power or hydrogen production units with inherent carbon capture in a future scenario where CO2 capture and storage (CCS) is reality. In this paper three different techniques are described; chemical-looping combustion and two categories of chemical-looping reforming. The three techniques are all based on oxygen carriers that are circulating between an air- and a fuel reactor, providing the fuel with undiluted oxygen. Two different oxygen carriers; NiO/NiAl2O4 (40/60 wt/wt) and NiO/MgAl2O4 (60/40 wt/wt) are compared. Both continuous and pulse experiments were performed in a batch laboratory fluidized bed working at 950 °C using methane as fuel. It was found that pulse experiments offer advantages in comparison to continuous experiments, particularly when evaluating suitable particles for autothermal chemical-looping reforming. Firstly, smaller conversion ranges can be investigated in more detail, and secondly, the onset and extent of carbon formation can be determined more accurately. Of the two oxygen carriers, NiO/MgAl2O4 offers several advantages at elevated temperatures, i.e. higher methane conversion, higher selectivity to reforming and lesser tendency for carbon formation.  相似文献   

12.
This paper presents the results obtained for the operation of a 10 kWth chemical-looping combustor using a South African coal as the solid fuel and an oxygen carrier of ilmenite, a natural iron titanium oxide. A chemical-looping combustor for solid fuels was designed and built. It consists of two interconnected fluidized beds, an air reactor where the oxygen carrier is oxidized and a fuel reactor where the coal is gasified by steam and the syn-gases react with the oxygen carrier. A constant coal flow corresponding to a thermal power of 3.3 kW was introduced into the fuel reactor. The tests were conducted at temperatures above 850 °C and for a total test duration of 22 h. The particle integrity of ilmenite and the particle circulation between the two reactors were investigated and verified. The effects of particle circulation on coal conversion, gas conversion of the fuel reactor and carbon separation or CO2 capture between the air and fuel reactors were investigated. The actual CO2 capture ranged between 82.5% and 96% while the gas conversion from the fuel reactor was in the range 78-81%, based on measurements of unconverted CO and CH4.  相似文献   

13.
Kinetic data of a promising oxygen carrier of NiO/NiAl2O4 have been established from experiments in a small fluidized bed batch reactor using methane. The particles were prepared by spray-drying using commercially available raw material and selected as the best candidates from an earlier screening study. The particles clearly showed high reactivity, with a maximum gas yield between 86% and 93% in the temperature interval 750 °C to 950 °C when using a bed mass and a gas flow corresponding to only 6 kg/MWfuel. A comparison of the reactivity with data from TGA experiments showed that the reactivity generally was faster in the batch fluidized bed in the investigated temperature interval. A simple reactor model using kinetic data from the batch fluidized bed reactor and the TGA predicted a minimum mass of 9–24 kg/MWfuel of oxygen carrier particles for full gas yield of methane to carbon dioxide in the fuel reactor. Comparison with experiments performed in a 10 and 120 kW CLC reactor with the same type of oxygen carrier showed that even when employing 13 to 50 times the amount of oxygen carrier theoretically needed for complete gas conversion, full gas yield was not obtained in the circulating systems. Hence it is of great importance to consider the fluid dynamics and gas-solid contact when modeling the fuel reactor of a chemical-looping combustor.  相似文献   

14.
This study concerns production of oxygen‐carrier particles using six different manganese ores. The ores were made to react with Ca(OH)2 at elevated temperature, forming calcium manganite. The method utilized to manufacture particles was extrusion. Methane and syngas conversion and oxygen release of the samples in inert atmosphere were investigated. The oxygen carrier based on South African (B) manganese ore, showed good methane conversion and was able to transfer oxygen corresponding to 1.5% of its mass during reduction with gaseous fuel. All examined oxygen carriers were capable of converting syngas completely. The ability to release gaseous oxygen was examined by adding wood char in a stream of nitrogen for four selected samples sintered at 1300°C/6 h. These samples released an amount of oxygen corresponding to 0.37–0.68% of their mass. The reactivity of all the ores was improved after the proposed treatments. Reactivity results of the oxygen carrier made from South African (B) ore and Ca(OH)2, sintered at 1300°C for 6 h were the most promising. Attrition measurements with a jet cup of the oxygen carriers sintered at 1300°C/6 h showed that all the samples made from ores were at least three times more resistant to mechanical attrition compared to particles made from synthetic Mn2O3. Producing feasible oxygen carriers directly from ores could potentially cut the cost of chemical looping with oxygen uncoupling and have a significant impact on its competitiveness among other carbon capture technologies. © 2013 American Institute of Chemical Engineers AIChE J 60: 645–656, 2014  相似文献   

15.
The naturally occurring mineral ilmenite, FeTiO3, has been examined as oxygen carrier for chemical-looping combustion. NiO-based particles have been used as an additive, in order to examine if it is possible to utilize the catalytic properties of metallic Ni to facilitate decomposition of hydrocarbons into more reactive combustion intermediates such as CO and H2. Firstly, ilmenite was examined by oxidation and reduction experiments in a batch fluidized-bed reactor. These experiments indicated moderate reactivity between ilmenite and CH4, which was used as reducing gas. However, adding 5 wt.% of NiO-based particles to the ilmenite improved the conversion of CH4 greatly, resulting in an increase in combustion efficiency with a factor of 3. Secondly, 83 h of chemical-looping combustion experiments were conducted in a small circulating fluidized-bed reactor, using ilmenite as oxygen carrier and natural gas as fuel. A wide range of process parameters and different levels of NiO addition were examined. Occasionally, there were problems with the circulation of solids between the air reactor and fuel reactor, but most of the time the experiments worked well. The products were mostly CO2, H2O and unconverted CH4. Adding small amounts of NiO-based particles to the reactor increased the conversion of the fuel considerably. For the base case conducted at 900°, the combustion efficiency was 76% for pure ilmenite and 90% for the corresponding experiments with 1 wt.% NiO-based particles added to the reactor. The properties of ilmenite were found to change considerably during operation. Used particles had lower density, were more reactive and more porous than fresh particles. These changes appear to have been physical, and no unexpected chemical phases could be identified.  相似文献   

16.
Jude A. Onwudili 《Fuel》2010,89(2):501-15
A viscous waste derived from a bio-diesel production plant, in the form of crude glycerol, was reacted under subcritical and supercritical water conditions and the product composition determined in relation to process conditions. Preliminary analysis of the original sample showed that the main constituent organic compounds were methanol (20.8 wt.%), glycerol (42.3 wt.%) and fatty acid methyl esters (33.1 wt.%). Uncatalyzed reforming experiments were carried out in a 75 ml Hastelloy-C batch reactor at temperatures between 300 °C and 450 °C and pressures between 8.5 MPa and 31 MPa. Oil/wax constituted more than 62 wt.% of the reactions products. At 300 °C, the main product was a waxy material containing mainly glycerol and fatty acid methyl esters. As the temperature increased to supercritical water conditions, low viscosity oils were produced and all of the glycerol was reacted. The oils contained mainly saturated and unsaturated fatty acid esters as well as their decomposition products. The gaseous products were carbon dioxide, hydrogen and methane and lower concentrations of carbon monoxide and C2-C4 hydrocarbons. No char formation was observed. However, during alkaline gasification with sodium hydroxide at 380 °C, the reaction products included a gaseous effluent containing up to 90% by volume of hydrogen, in addition to oil and significant amount of whitish solid residue (soap). Sodium hydroxide influenced the production of hydrogen via water-gas shift by the removal of carbon dioxide as sodium carbonate, but also decreased oil product possibly through saponification.  相似文献   

17.
A dual circulating fluidized bed pilot plant was operated in chemical looping reforming conditions at a scale of 140 kW fuel power with natural gas as fuel. A nickel-based oxygen carrier was used as bed material. The pilot plant is equipped with an adjustable cooling system. Three experimental campaigns have been carried out at 747 °C (1020 K), 798 °C (1071 K) and 903 °C (1176 K), respectively. In each campaign, the global stoichiometric air/fuel ratio was varied step-wise between 1.1 and the minimum value possible to keep the desired operating temperature when the cooling is finally switched off. The results show that the fuel reactor exhaust gas approaches thermodynamic equilibrium. The residual amount of methane left decreases with increasing fuel reactor temperature. Further, the oxygen in the air reactor can be completely absorbed by the solids as soon as the air reactor operating temperature is higher than 900 °C (1173 K). Even though no steam was added to the natural gas feed no carbon formation was found for global excess air ratios larger than 0.4.  相似文献   

18.
Co-combustion of pulverised coal with a woody biomass, cedar chip was conducted in a lab-scale drop-tube furnace (DTF) to investigate the synergetic interaction between the inorganic elements of different fuels and the emissions of sub-micron particles (particles smaller than 1.0 μm in size, PM1) and super-micron particles (particles in the size range of 1.0-10 μm, PM1+) during co-firing. The mass fraction of cedar chip in fuel blend ranged from 10% to 50%. All the fuels were burnt in air at two furnace temperatures, 1200 and 1450 °C. The results indicate that, under an identical calorific input, combustion of cedar chip alone favored the emission of sub-micron PM1, which is dominated by volatile elements including K, Ca, Fe, Na and P. A large fraction of K and Na were most probably present as gaseous vapors in the furnace. The other metals mainly condensed into nano-scale nuclei which subsequently coagulated into a variety of sizes in flue gas. Coal combustion alone favored the release of super-micron particles rich in Al and Si. Emission of PM upon co-firing was a function of both cedar chip share and furnace temperature. At a small mass fraction for cedar chip in fuel blend, e.g. 10% tested here, interaction between the inorganic elements of single fuels was insignificant at either furnace temperature. Accordingly, the quantities of PM1 and PM1+ emitted from co-firing at 10% cedar chip were slightly higher than from the combustion of coal alone, due to the contribution of cedar chip. Significant interaction between the inorganic elements of single fuels was observed for co-firing of coal with >10% cedar chip at the furnace temperature of 1450 °C. As has been confirmed, adding 20-30% cedar chip to coal resulted in the shift of approximately 90% of PM1 and 50% PM1+ into coarse ash particles. For the cedar chip-derived alkali vapors and nano-scale/sub-micron particles, the rates of their shift into larger particles were influenced by two competing routes, homogeneous coagulation and surface reaction with coal-derived kaolin. In contrast, the shift of super-micron particles was primarily determined by their collision probability with the coal-derived mineral grains in bulk gas. A sticky surface for particles is also essential. The shift of individual metals into coarse ash differed distinctly from one another.  相似文献   

19.
Different Ni-based oxygen carriers were prepared by dry impregnation using γ-Al2O3 as support. The reactivity, selectivity during methane combustion, attrition rate and agglomeration behavior of the oxygen carriers were measured and analyzed in a thermogravimetric analyzer and in a batch fluidized bed during multi-cycle reduction-oxidation tests.Ni-based oxygen carriers prepared on γ-Al2O3 showed low reactivity and low methane combustion selectivity to CO2 and H2O, because most of the impregnated NiO reacted to NiAl2O4. To avoid or to minimize the interaction of NiO with alumina some modifications of the support via thermal treatment or chemical deactivation with Mg or Ca oxides were analyzed. Thermal treatment of γ-Al2O3 at 1150 °C produced the phase transformation to α-Al2O3. Ni-based oxygen carriers prepared on α-Al2O3, MgAl2O4, or CaAl2O4 as support showed very high reactivity and high methane combustion selectivity to CO2 and H2O because the interaction between the NiO and the support was decreased. In addition, these oxygen carriers had very low attrition rates and did not show any agglomeration problems during operation in fluidized beds, and so, they seem to be suitable for the chemical-looping combustion process.  相似文献   

20.
Hollow fibre membranes of mixed conducting perovskite La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) were prepared via the combined phase inversion and sintering technique. The fibres were tested for air separation with a home-made reactor under the oxygen partial pressure gradient generated by the air/He streams. Some fibres were in situ activated by introducing methane in the He sweeping gas at high temperatures. The activated membranes with new morphology were created by transforming the inner densified surface layer to a porous structure. Compared to the original membranes, the activated gave appreciable higher oxygen fluxes. At 800 °C, the oxygen fluxes were increased by a factor of 10 after activation was carried out at 1000 °C for 1 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号