首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
陈星燕  曾以成  邓玉斌 《微电子学》2016,46(4):497-501, 506
针对传统LED驱动芯片不适用于大功率连续照明的问题,设计了一种电流随温度自适应调节的LED驱动电路。该电路具备过温滞回关断保护作用。基于CSMC 0.5 μm工艺,Spectre仿真结果表明,当电源电压正负波动10%时,恒流输出波动小于1.1%;当系统温度在0 ℃~83 ℃变化时,恒流输出变化小于0.28%;在83 ℃~103 ℃之间,调控输出电流可调幅度为93 mA,这种幅度变化不会被人眼发觉有明显光变;当温度升高到106 ℃时,过温关断保护电路开启,关断整体电路输出,直到温度降回69 ℃后,LED驱动电路又重新开启。  相似文献   

2.
本文设计了一种带过温保护功能的LED恒流驱动电路。该电路由恒流驱动模块和温度传感模块组成,能在设定温度下同时控制两个开关NMOS管,实现过温保护功能。恒流驱动模块采用的方案能够有效降低恒流工作电压并实现利用外接电阻控制恒流输出的大小,驱动电流范围为54.26mA到258.24mA。当驱动电流为258.24mA时,恒流工作电压仅为0.35V。在LED电源电压正负变化10%范围内,驱动电流变化小于5%。温度传感模块利用PTAT(与绝对温度成正比)电压与基准电压比较,产生关断信号,关断温度在60℃~100℃范围内可由外接电阻设定。  相似文献   

3.
设计了一种带有过温保护和自适应调节功能的发光二极管(LED)恒流驱动电路。该驱动电路主要由过温保护电路和自适应电路组成,过温保护电路用于检测系统的工作温度情况,当系统处于高温时会输出关断信号使电路停止工作;自适应电路在自适应温度范围内通过向恒流模块输入与绝对温度成正比(PTAT)电流来调控LED驱动电流的大小,达到自适应目的。该LED驱动电路将温度自适应与带有滞回功能的过温关断电路巧妙地结合在一起,使得电路简单,性能良好。基于0.5 μm CMOS工艺,Spectre仿真结果表明:当系统在0 ℃~89.6 ℃变化时,恒流输出波动小于0.57%;在89.6 ℃~111 ℃变化时,调控输出电流可调幅度为80 mA;在114 ℃时,过温保护电路开启,电路停止工作,直到温度降回73.3 ℃后,LED驱动电路重新开始工作。  相似文献   

4.
设计了一款对温度自适应的LED恒流驱动电路。在该电路中,将滞回关断电路与自适应电路集成到一个模块里,很大程度上简化了电路。滞回关断电路会在系统处于高温时输出关断信号,使电路停止工作;而自适应电路在系统处于调控温度时,会产生一个负温度系数的电压来调控输出电流的大小,达到自适应的目的。基于0.5μm CMOS工艺,Spectre仿真结果表明:当系统温度在0~70℃变化时,恒流输出变化小于0.57%;从70℃到105℃,调控输出电流可调幅度为100 m A;108℃时,电路关断输出,直到温度降回65℃后,重新开启。  相似文献   

5.
LED恒流驱动电路研究与设计   总被引:1,自引:0,他引:1  
基于CSMC 0.5μm BCD工艺给出LED恒流驱动电路.利用MOS管饱和区恒流特性以及电流负反馈结构,给出三种恒流驱动方案.比较三种方案的恒流工作电压,确立最终结构.采用的方案能够有效降低恒流工作电压并实现利用外接电阻控制恒流输出的大小,驱动电流范围为14.5mA到91.5mA.驱动电流可以通过外接PWM数字信号实现输出使能控制,控制响应时间为7ns.可用于LED显示屏.通过Hspice软件进行仿真,5V的电源电压波动±10%时驱动电流波动小于1.85%.环境温度由25℃变化到85℃时驱动电流变化2.14%.外接电压由0V变化到5V,此时的驱动电流变化小于5.5%.当驱动电流为91.5mA时,恒流工作电压仅为0.38V.  相似文献   

6.
洪静  王卫东 《电子器件》2013,36(4):465-468
为满足LED显示驱动芯片的要求,采用CSMC 0.5μm CMOS数模混合工艺,设计了LED恒流驱动电路。采用补偿网络与高精度电流镜,改善电路的瞬态响应并提高输出电流的精度。该电路可利用外接电阻调节恒流输出的大小,电流输出范围为3 mA~40 mA。利用Spectre在不同工艺角下对电路进行仿真,电源电压从4.5 V~5.5 V变化时,电流的最大变化率为1.62%;温度变化范围为-40℃~85℃时,最大温度系数为58.84×10-6,外接电压由2 V~6 V变化时,电流最大变化率为2.23%,驱动电路性能良好。  相似文献   

7.
滞环电流控制的大功率LED恒流驱动芯片设计   总被引:4,自引:1,他引:3  
设计了一款滞环电流控制的大功率LED恒流驱动芯片,其采用高边电流检测方案,通过内部电流检测电路对LED驱动电流进行滞环控制,从而获得恒定的平均电流。芯片采用9VBICMOS工艺流片,可输出350mA电流驱动1W的LED,也可输出750mA电流驱动3W的LED。在4.5~9V输入电压范围内,芯片输出驱动电流变化小于3.5%。在环境温度从25°C变化到100°C时,芯片输出驱动电流变化小于5%。由于滞环电流控制环路存在自稳定性,芯片无需补偿电路。  相似文献   

8.
大功率照明白光LED恒流驱动芯片设计   总被引:2,自引:0,他引:2  
基于0.6μm标准CMOS工艺,研究设计了一款大功率照明白光LED恒流驱动芯片,可为两路功率型LED分别提供恒定的350mA驱动电流。驱动电路的输出级大功率管采用蛇形栅结构的设计,在标准CMOS工艺线上实现了功率器件与控制电路的单片集成。采用单电源供电,最高输出功率可达3W以上;单电源电压在4~7V范围内,芯片能够实现良好的恒流驱动功能,驱动电流恒流失配度保持在3.09%以内;当标准5V电源有10%的变化时,驱动电流的变化可控制在1.42%之内,恒流失配度保持在2.84%以内;而当环境温度在10~90℃范围内变化,驱动电流最多增大1.75%,恒流失配度保持在3.15%以内。采用双电源供电时,芯片电源转换效率可达83%。  相似文献   

9.
谌敏飞  洪志良 《微电子学》2015,45(3):298-302
介绍了一种具有功率因数校正功能的原边反激式LED驱动变换器。分析了原边控制的反激式变换器恒流输出的原理与输出电流线性调整率衰退的主要原因;设计了一种自适应的片内功率管关断延时检测与补偿电路,改善了输出电流的线性调整率。设计的单级反激式变换器在90~260 V交流输入电压范围内,功率因数大于0.9,输出功率范围为5~13 W。通过采用改进的峰值电流采样技术与内置自适应关断延时补偿技术,输出电流的线性调整率由23.3%减小到小于1.2%。  相似文献   

10.
吴娜  冯全源  邸志雄 《微电子学》2018,48(2):203-206, 215
为提高发光二极管(LED)驱动电路恒流稳定性,设计一种基于原边反馈反激变换器的数字恒流源作为驱动电路。采用数字软启动电路消除浪涌电流,避免了输出电压过冲。软开关技术的应用使得系统在整个恒流范围内的平均效率高达80.49%。逐周期的峰值电流控制实现了恒流输出。基于SMIC 0.18 μm CMOS工艺进行物理设计,版图面积为14 370 μm2。仿真结果表明,该LED驱动电路可根据用户需求,通过调整电路参数,在提高输出电流稳定性的基础上实现400~1 000 mA的恒流输出,输出电流纹波仅为0.28%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号