首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The electrical and photovoltaic properties of the nanostructure ZnO/p-Si diode have been investigated. The nanostructure ZnO/p-Si diode was fabricated using sol–gel spin coating method. The ideality factor and barrier height of the diode were found to be 3.18 and 0.78 eV, respectively. The obtained n ideality factor is higher than 2, indicating that the diode exhibits a non-ideal behavior due to the oxide layer and the presence of surface states. The nanostructure of the ZnO improves the quality of ZnO/p-Si interface. The diode shows a photovoltaic behavior with a maximum open circuit voltage Voc of 0.26 V and short-circuits current Isc of 1.87×10?8 A under 100 mW/cm2. It is evaluated that the nanostructure ZnO/p-Si diode is a photodiode with the obtained electronic parameters.  相似文献   

2.
Single-crystalline nonpolar GaN epitaxial films have been successfully grown on r-plane sapphire (Al2O3) substrates by pulsed laser deposition (PLD) with an in-plane epitaxial relationship of GaN[1-100]//Al2O3[11-20]. The properties of the ~500 nm-thick nonpolar GaN epitaxial films grown at temperatures ranging from 450 to 880 °C are studied in detail. It is revealed that the surface morphology, the crystalline quality, and the interfacial property of as-grown ~500 nm-thick nonpolar GaN epitaxial films are firstly improved and then decreased with the growth temperature changing from 450 to 880 °C. It shows an optimized result at the growth temperature of 850 °C, and the ~500 nm-thick nonpolar GaN epitaxial films grown at 850 °C show very smooth surface with a root-mean-square surface roughness of 5.5 nm and the best crystalline quality with the full-width at half-maximum values of X-ray rocking curves for GaN(11-20) and GaN(10-11) of 0.8° and 0.9°, respectively. Additionally, there is a 1.7 nm-thick interfacial layer existing between GaN epitaxial films and r-plane sapphire substrates. This work offers an effective approach for achieving single-crystalline nonpolar GaN epitaxial films for the fabrication of nonpolar GaN-based devices.  相似文献   

3.
Sprayed ZnO films were grown on glass at different substrate temperatures from 200 °C to 500 °C and their structural, optical and electrical properties were investigated. All films are polycrystalline with hexagonal wurtzite structure. ZnO films at substrate temperatures above 400 °C appear to be better crystalized with (002) plane as preferential orientation. Optical transmission spectrum shows that ZnO films have high transmission (above 80%) in visible region for substrate temperatures above 400 °C. Photoluminescence spectra at room temperature show an ultraviolet emission and two visible emissions at 2.82 eV and 2.37 eV. The resistivity of ZnO films increases with increasing substrate temperatures (above 400 °C). The ZnO film deposited at 400 °C shows highest figure of merit.  相似文献   

4.
The discrepancy of rectifying characteristics in n-ZnO:Al/p-Si heterojunctions from diode to diode was demonstrated by region dependent dark IV characteristics, where the junction is laterally cut to sequentially decrease the area. Further investigation shows that the junction (2.1×2.1 cm2) with the barrier height Φ=0.693 eV consists of one part (2.1×1.4 cm2) with Φ=0.695 eV and the other part (2.1×0.7 cm2) with Φ=0.686 eV. It is found that reverse currents saturate with different values of 3.6×10?3, 2.5×10?3 and 1.58×10?3 A for the light IV curves of the three junctions with the same areas. To explain this peculiarity, the probable reason is discussed in terms of carrier transportation through the spatially fluctuating barrier.  相似文献   

5.
Cadmium sulfide (CdS) thin films were deposited onto soda lime glasses and p-Si semiconductors at various substrate temperatures (40, 150 and 275 °C) by radio frequency (RF) sputtering technique. The effect of substrate temperature on morphological, structural and optical properties of CdS thin films were analyzed by means of atomic force microscopy (AFM), x-ray diffraction (XRD) and uv–vis spectrum data. The results showed that the average roughness (Ra) of thin films increased from 2.0 to 4.0 nm and all films had hexagonal wurtzite structure. The optical band gaps of CdS thin films varied between 2.46–2.43 eV. Characteristic parameters of CdS/p-Si heterojunctions including ideality factor, barrier height, series resistance and rectification ratio were measured. It was seen that both ideality factor and barrier height values of the heterojunctions increase with the increase substrate temperature. It was attributed to increase in inhomogenity of the thin films. Furthermore, the photoelectrical parameters of CdS/p-Si heterojunctions were studied.  相似文献   

6.
Hydrothermal zinc oxide (ZnO) nanorod (NR)-based p-Si/n-ZnO and p-Si/i-SiO2/n-ZnO heterojunctions were fabricated, and the effects of interfacial native SiO2 (~4 nm) on the I-V characteristics of heterojunctions under dark and ultra-violet illumination conditions were investigated. First, the structural and optical properties of ZnO seed crystals grown by sol-gel method and hydrothermal ZnO NRs on two different substrates of p-Si and p-Si/i-SiO2 were examined, and more improved optical and crystalline quality was obtained as revealed by photoluminescence and X-ray diffraction. The p-i-n heterojunctions showed ~3 times greater forward-bias currents and enhanced rectifying property than those of p-n junctions, which is attributed to the role of native SiO2 in carrier confinement by promoting the electron-hole recombination current through the deep level states of ZnO crystal. The measured ratios of photocurrent to dark current of the p-i-n structure were also greater under reverse bias (92–260) and forward bias (2.3–7.1) conditions than those (28–225 for reverse bias, 1.6–6.8 for forward bias) of p-n structure, and the improved photosensitivity of the p-i-n structure under reverse bias is due to lower density of recombination centers in the ZnO NR crystals. Fabricated ZnO NR heterojunction showed repeatable and fast photo-response transients under forward bias condition of which response and recovery times were 7.2 and 3.5 s for p-i-n and 4.3 and 1.7 s for p-n structures, respectively.  相似文献   

7.
In this study, ZnO dandelion-like nanostructures were rapidly synthesized on Si substrates using a two-step thermal oxidation approach. The ZnO nanostructures were grown at various thermal oxidation temperatures ranging from 400 °C to 700 °C. These nanostructures were then applied to humidity sensing and photocatalysis. The ratio of measured resistances in the humidity sensors for relative humidity (RH) levels of 11% and 95% at room temperature (RT) were found to rise from 102 to 105 times for humidity sensors constructed with the nanostructures grown at temperatures from 400 °C to 700 °C, respectively, and sensor response time decreased from 15 s to 5 s. These results show that the proposed ZnO dandelion-like nanomaterial shows promise as a candidate for fabricating high-performance humidity sensors when the nanostructures are grown at 700 °C. In addition, the photocatalytic effect of the nanostructures was tested with a decomposition of methyl orange (MO) dye under UV illumination. Experimental results show that the ZnO dandelion-like nanomaterial grown at a thermal oxidation temperature of 700 °C exhibits an excellent photocatalytic effect, which degrades to almost 90% of the MO activity over 120 min.  相似文献   

8.
In this work, we investigated effects of high temperature rapid thermal annealing for the zinc oxide (ZnO) seed layers on the growth morphology and crystal orientation of hydrothermal ZnO nanorods (NRs). The seed layers were prepared by sol–gel spin coating and annealed by two-step rapid thermal processes at different peak temperatures ranging from 600 to 900 °C for a short time period of 1 min. The seed layers annealed in a temperature range of 600–800 °C were all polycrystalline; however, they exhibited a highly Zn-deficient amorphous state when annealed at 900 °C as observed by X-ray photoelectron spectroscopy, X-ray diffraction (XRD), and cross-sectional transmission electron microscopy (TEM). The vertical NRs normal to the substrate were grown along [001] direction atop the polycrystalline seeds annealed at 600–800 °C, whereas different growth morphology of flower-like NRs was observed on the seeds annealed at 900 °C with the strongest XRD peak along the [100] orientation. From our cross-sectional TEM analysis, this flower-like architecture was initiated from the pioneer crystals laterally grown along [001] direction guiding the subsequent growth of petal NRs oriented by a slight difference in growth direction.  相似文献   

9.
Al-doped ZnO (AZO) film was deposited by direct-current (DC) magnetron sputtering on p-Si (1 0 0) wafer to fabricate Al-doped n-ZnO/p-Si heterojunctions. The microstructural, optical and electrical properties of the AZO film were characterized by XRD, SEM; UV–vis spectrophotometer; four-point probe and Hall effect measurement, respectively. Results show that the AZO film is of good quality. The electrical junction properties were investigated by I–V measurement, which reveals that the heterojunction shows rectifying behavior under a dark condition. The ideality factor and the saturation current of this diode are 20.1 and 1.19×10−4 A, respectively. The value of IF/IR (IF and IR stand for forward and reverse current, respectively) at 5 V is found to be as high as 19.7. It shows fairly good rectifying behavior, indicating formation of a diode between AZO and p-Si. High photocurrent is obtained under a reverse bias when the crystalline quality of AZO film is good enough to transmit light into p-Si.  相似文献   

10.
《Microelectronics Reliability》2014,54(12):2754-2759
TiO2/ZnO films grown by atomic layer deposition (ALD) demonstrated nanotribological behaviors using scratch testing. TEM profiles obtained an amorphous structure TiO2 and nanocrystalline structure ZnO, whereas the sample has significant interface between the TiO2/ZnO films. The experimental results show the relative XRD peak intensities are mainly contributed by a wurtzite oxide ZnO structure and no signal from the amorphous TiO2.With respect to tribology, increased friction causes plastic deformation between the TiO2 and ZnO films, in addition to delamination and particle loosening. The plastic deformation caused by adhesion and/or cohesion failure is reflected in the nanoscratch traces. The pile-up events at a loading penetration of 30 nm were measured at 21.8 μN for RT, 22.4 μN for 300 °C, and 36 μN for 400 °C. In comparison to the other conditions, the TiO2/ZnO films annealed at 400 °C exhibited higher scratch resistance and friction with large debris, indicating the wear volume is reduced with increased annealing temperature and loading.  相似文献   

11.
The effect of annealing temperature on photoluminescence (PL) of ZnO–SiO2 nanocomposite was investigated. The ZnO–SiO2 nanocomposite was annealed at different temperatures from 600 °C to 1000 °C with a step of 100 °C. High Resolution Transmission Electron Microscope (HR-TEM) pictures showed ZnO nanoparticles of 5 nm are capped with amorphous SiO2 matrix. Field Emission Scanning Electron Microscope (FE-SEM) pictures showed that samples exhibit spherical morphology up to 800 °C and dumbbell morphology above 800 °C. The absorption spectrum of ZnO–SiO2 nanocomposite suffers a blue-shift from 369 nm to 365 nm with increase of temperature from 800 °C to 1000 °C. The PL spectrum of ZnO–SiO2 nanocomposite exhibited an UV emission positioned at 396 nm. The UV emission intensity increased as the temperature increased from 600 °C to 700 °C and then decreased for samples annealed at and above 800°C. The XRD results showed that formation of willemite phase starts at 800 °C and pure willemite phase formed at 1000 °C. The decrease of the intensity of 396 nm emission peak at 900 °C and 1000 °C is due to the collapse of the ZnO hexagonal structure. This is due to the dominant diffusion of Zn into SiO2 at these temperatures. At 1000 °C, an emission peak at 388 nm is observed in addition to UV emission of ZnO at 396 nm and is believed to be originated from the willemite.  相似文献   

12.
An inverted organic bulk-heterojunction solar cell containing a zinc oxide (ZnO) based electron collection layer with a structure of ITO/ZnO/[6,6]-phenyl C61 butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene): poly(4-styrene sulfonic acid)/Au (ZnO cell) was fabricated. We examined the relationship between the heating temperature of the ZnO layer and the device performance under irradiation by simulated sunlight while cutting the UV light. The effects of the UV light contained in simulated sunlight were investigated by photocurrent–voltage (IV) and alternating current impedance spectroscopy (IS) measurements. When the ZnO cells were irradiated with simulated sunlight, they exhibited a maximum power conversion efficiency (PCE) of over 3%, which hardly varied with the heating temperature of ZnO layers treated at 250 °C, 350 °C, and 450 °C. In contrast, when the ZnO cells were irradiated with simulated sunlight without UV content, their photovoltaic characteristics were very different. In the case of the cell with ZnO prepared by heating at 250 °C, PCE of 2.7% was maintained even under continuous irradiation with simulated sunlight without UV. However, for the cells with ZnO prepared by heating at 350 °C and 450 °C, the shapes of the IV curves changed with the UV-cut light irradiation time, accompanying an increase in their series resistance. Overall, after UV-cut light irradiation for 1 h, the PCE of the cell with ZnO prepared by heating at 350 °C decreased to 1.80%, while that of the cell with ZnO prepared by heating at 450 °C fell to 1.35%. The photo IS investigations suggested that this performance change was responsible for the formation of charge-trapping sites at the ZnO/PCBM:P3HT interface which act as recombination centers for photo-produced charges in the PCBM:P3HT layer.  相似文献   

13.
Lead sulfide (PbS) thin films with 150 nm thickness were prepared onto ultra-clean quartz substrate by the RF-sputtering deposition method. Deposited thin films of PbS were annealed at different temperatures 100 °C, 150 °C, 200 °C, 250 °C and 300 °C. X-ray diffraction pattern of thin films revealed that thin films crystallized at 150 °C. Crystalline thin films had cubic phase and rock salt structure. The average crystallite size of crystalline thin films was 22 nm, 28 nm and 29 nm for 150 °C, 200 °C and 250 °C respectively. From 150 °C to 250 °C increase in annealing temperature leads to increase in crystallite arrangement. FESEM images of thin films revealed that crystallite arrangement improved by increasing annealing temperature up to 250 °C. Increase in DC electrical conductivity by increasing temperature confirmed the semiconductor nature of crystalline thin films. Increase in dark current by increasing annealing temperature showed the effect of crystallite arrangement on carrier transport. Photosensitivity decreased by increasing annealing temperature for crystalline thin films that it was explained at the base of thermal quenching of photoconductivity and adsorption of oxygen at the surface of thin films that leads to the formation of PbO at higher temperatures.  相似文献   

14.
ZnO thin films without and with a homo-buffer layer have been prepared on Si(1 1 1) substrates by pulsed laser deposition (PLD) under various conditions. Photoluminescence (PL) measurement indicates that the optical quality of ZnO thin film is dramatically improved by introducing oxygen into the growth chamber. The sample deposited at 60 Pa possesses the best optical properties among the oxygen pressure range studied. X-ray diffraction (XRD) results show that the films directly deposited on Si are of polycrystalline ZnO structures. A low-temperature (500 °C) deposited ZnO buffer layer was used to enhance the crystal quality of the ZnO film. Compared to the film without the buffer layer, the film with the buffer layer exhibits aligned spotty reflection high-energy electron diffraction (RHEED) pattern and stronger near-band-edge emission (NBE) with a smaller full-width at half-maximum (FWHM) of 98 meV. The structural properties of ZnO buffer layers grown at different temperatures were investigated by RHEED patterns. It is suggested that the present characteristics of the ZnO epilayer may be raised further by elevating the growth temperature of buffer layer to 600 °C.  相似文献   

15.
Conductive ruthenium oxide films are considered as possible candidate for electrodes in complementary metal oxide semiconductor and random-access memory applications. We have succeeded in growth of highly conducting RuO2 films by metal organic chemical vapour deposition on silicon substrates at deposition temperatures between 250°C and 500°C. Structural and electrical properties of the films were studied as a function of deposition temperature. Room temperature resistivity of the films increased from 40 μΩcm for the deposition temperature 500°C to above 100 μΩcm for the deposition temperature 250°C. The films prepared at temperatures below 300°C exhibit smooth surface and excellent step coverage. These films could be used in the above-mentioned applications.  相似文献   

16.
In this study, GaN nanostructures were grown on p-Si (111) substrate by thermal chemical vapor deposition (TCVD). Ga vapor directly reacted with NH3 solution in N2 carrier gas flow of 2 L/min at different temperatures (950–1050 °C). The influence of NH3 solution and growth temperature on the morphology, structure, optical and photoresponse properties of GaN nanostructures was investigated. Scanning electron microscopy images showed that the densities of the NWs varied with increasing temperature. The use of NH3 solution and increased growth temperature improved the crystalline quality of GaN nanostructures. The photoluminescence (PL) spectra of nanostructures displayed a near band-edge (NBE) emission at around 363–367 nm. Higher growth temperature (1050 °C) resulted in a strong NBE emission with no yellow emission peak. With +5 V applied bias, the NWs metal–semiconductor–metal UV photodetector exhibited a high photocurrent of 1.6×10−3 A. The photocurrent to dark current contrast ratio was 120.  相似文献   

17.
Successful organic photovoltaic (OPV) device fabrication is contingent on selecting an effective encapsulation barrier layer to preserve device functionality by inhibiting atmosphere-induced degradation. In this work, ultra-thin AlOx layers are deposited by atomic layer deposition (ALD) to encapsulate pre-fabricated OPV devices. A summary of ALD recipe effects (temperature, cycling time, and number of cycles) on AlOx film growth and device longevity is presented. First, AlOx film growth on the hydrophobic OPV surface is shown to occur by a 3D island growth mechanism with distinct nucleation and cluster growth regions before coalescence of a complete encapsulation layer with a thickness ⩾7 nm by 500 cycles. Encapsulated device performance testing further demonstrates that reducing ALD processing temperature to 100 °C minimizes OPV phase segregation and surface oxidation loss mechanisms as evidenced by improved short circuit current and fill factor retention when compared with the conventional 140–150 °C range. Ultra-thin AlOx encapsulation by ALD provides significant device lifetime enhancement (∼30% device efficiency after 2000 h of air exposure), which is well beyond other ALD-based encapsulation works reported in the literature. Furthermore, the interfacial bonding strength at the OPV–AlOx interface is shown to play a crucial role in determining film failure mode and therefore, directly impacts ultimate device lifetime.  相似文献   

18.
High-quality radio frequency–sputtered ZnO were grown on Si substrates at 400 °C at various partial gas pressures (Ar/Ar+O2). Subsequently, to remove as-grown defects, high temperature annealing from 700 to 900 °C on as-grown samples in constant oxygen flow for 10 s was performed. X-ray diffraction study confirmed the formation of highly crystalline films with a dominant peak at (002). The sample grown in 50% Ar and 50% O2 ambient exhibited the lowest linewidth (2θ=~0.2728°) and highest stoichiometry. Grain size of the as grown samples decreased with increase in the partial pressure of oxygen till a certain ratio (1:1), and photoluminescence (PL) improved with increase in annealing temperature. Low-temperature (18 K) PL measurements showed a near-band-edge emission peak at 3.37 eV, and the highest peak intensity (more than six orders compared to others with narrow linewidth of ~0.01272 eV) was exhibited by the sample annealed at 900 °C and was six orders higher than that of the as-grown sample. All as-grown samples exhibited dominant visible-range peaks due to emission from defect states.  相似文献   

19.
High-κ TiO2 thin films have been fabricated using cost effective sol–gel and spin-coating technique on p-Si (100) wafer. Plasma activation process was used for better adhesion between TiO2 films and Si. The influence of annealing temperature on the structure-electrical properties of titania films were investigated in detail. Both XRD and Raman studies indicate that the anatase phase crystallizes at 400 °C, retaining its structural integrity up to 1000 °C. The thickness of the deposited films did not vary significantly with the annealing temperature, although the refractive index and the RMS roughness enhanced considerably, accompanied by a decrease in porosity. For electrical measurements, the films were integrated in metal-oxide-semiconductor (MOS) structure. The electrical measurements evoke a temperature dependent dielectric constant with low leakage current density. The Capacitance–voltage (CV) characteristics of the films annealed at 400 °C exhibited a high value of dielectric constant (~34). Further, frequency dependent CV measurements showed a huge dispersion in accumulation capacitance due to the presence of TiO2/Si interface states and dielectric polarization, was found to follow power law dependence on frequency (with exponent ‘s’=0.85). A low leakage current density of 3.6×10−7 A/cm2 at 1 V was observed for the films annealed at 600 °C. The results of structure-electrical properties suggest that the deposition of titania by wet chemical method is more attractive and cost-effective for production of high-κ materials compared to other advanced deposition techniques such as sputtering, MBE, MOCVD and ALD. The results also suggest that the high value of dielectric constant ‘κ‘ obtained at low processing temperature expands its scope as a potential dielectric layer in MOS device technology.  相似文献   

20.
The effect of different annealing temperatures on magnetic properties of Co- and Ni-doped ZnO hollow nanospheres was investigated. It was found that the hollow structures and room-temperature ferromagnetism were kept when the Co- and Ni-doped ZnO samples were annealed at low temperature of 550 °C. When the temperature was elevated to 700 °C, the hollow structures partially collapsed and the samples still exhibited ferromagnetic behavior. The hollow structures were completely broken with annealing temperature above 1200 °C. The ferromagnetic behavior of Co-doped ZnO disappeared, while the Ni-doped ZnO still exhibited reduced ferromagnetism. However, the ferromagnetism in high-temperature annealed Ni-doped ZnO nanospheres was extrinsic and probably originated from secondary phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号