首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
针对现有悬臂梁FBG加速度传感器光纤表面粘贴会造成FBG受力不均匀,并且无法在温度变化和振动等复杂的环境中工作的问题,提出一种双光纤-悬臂梁结构的FBG加速度传感器。理论分析了结构参数对传感器灵敏度和固有频率的影响,并采用ANSYS有限元分析软件进行了静应力和模态仿真分析,最后搭建了测试系统对传感器进行性能测试。结果表明,加速度传感器的固有频率为84.86Hz,在15~60Hz的低频段具有平坦的灵敏度响应,双光纤在增加传感器的灵敏度的同时有效消除了温度变化的影响,加速度灵敏度为156.70pm/g,线性度为99.38%,刚性梁有效增加了结构的稳定性,在工作频段内的横向串扰为-26.97dB。  相似文献   

2.
贾振安  张星  李康  樊庆赓 《光电子.激光》2018,29(10):1053-1057
为了提高振动传感器对加速度信号测量的灵敏度 ,本文提出了一种新型的基于悬臂梁和滑动杆结 合的光纤光栅振动加速度传感器。详细阐述了传感器的结构和工作原理,并推导了传感器固 有频率和灵敏 度的理论公式。最后通过振动台测试了传感器的固有频率和灵敏度,并和光纤光栅仅沿光纤 轴向上受力的 实验数据进行了比较。实验结果表明,传感器频率响应曲线的平坦区域在10~38Hz之间,传感器的固有频 率为62Hz,灵敏度为52.8pm/g。与光纤光栅 仅沿光纤轴向受力的实验相比较,加速度灵敏度提高了70.8%。  相似文献   

3.
为了弥补现有振动传感器的不足,在分析匹配光栅解调原理的基础上,设计了一种新型的光纤光栅振动传感器.该传感器采用了梁式结构,可以通过调节梁改变传感光栅的中心波长和传感器的固有频率,既可以实现匹配解调,又扩大了频率测量范围.通过标准信号测试实验,得出该光纤光栅振动传感器具有良好的频率检测性能,频率测量范围为0~200 Hz,在20 Hz、190 Hz检测的波形具有良好的信噪比.  相似文献   

4.
贾振安  党硕  樊伟  禹大宽 《红外》2023,44(5):24-31
为了实现两个方向的振动信号检测,提出了一种以杆为弹性结构的二维光纤光栅振动传感器。首先对该传感器进行了理论分析,并推导出其固有频率和灵敏度公式。然后对传感器结构进行了优化仿真,确定各个参数的最终值。最后通过实验研究了传感器的各项性能。实验结果表明,该传感器在x方向上的固有频率为493 Hz,灵敏度为54 pm/g,线性度为99.9%;在y方向上的固有频率为466 Hz,灵敏度为5 pm/g,线性度为97.5%。此外,采用双光纤光栅消除了温度对振动信号测量的影响,温度灵敏度为0.1 pm/°C。该传感器结构简单,可检测两个方向的振动信号,消除了温度的影响,在振动信号检测中表现良好,因此在多维振动信号检测领域具有重要研究意义。  相似文献   

5.
提出了一种基于对称悬臂梁的小型化低频光纤布拉格光栅(FBG)加速度传感器。首先根据传感器结构的力学模型,推导出传感器的灵敏度和固有频率表达式;然后对传感器进行结构参数优化,采用ANSYS Workbench对传感器进行静应力与模态分析;最后根据分析结果制作传感器,并实验研究了传感器的幅频响应、灵敏度特性、横向抗干扰能力和冲击响应。结果表明,该传感器固有频率为72 Hz,灵敏度为681.7 pm/g,抗横向干扰度小于4.9%,且体积仅为6.48 cm^(3),可用于50 Hz以下的低频微弱振动信号的实时监测。  相似文献   

6.
朱晓辉  俞梅 《半导体光电》2018,39(3):394-397
介绍了一种基于光纤传感技术的等截面悬臂梁固有频率的测量方法,并采用理论计算和软件仿真对其进行了验证.首先,理论推导了粘贴于悬臂梁表面的光栅中心波长与其所在位置处挠度的关系;然后,根据分析结果,搭建了实验测量系统,该实验采用高温火焰烧断连接线的方法产生一个初始的阶跃信号,测量结果为20.093Hz;接着,采用里兹法对梁固有频率进行理论计算,结果为20.311Hz;最后,利用ANSYS软件对悬臂梁进行模态分析,得到梁的一阶模态为20.44Hz.实验测量结果与理论计算、有限元仿真结果十分接近,证明了该方法是正确、可行的,为悬臂梁固有频率的获取提供了新思路.  相似文献   

7.
针对桥梁低频振动监测灵敏度低的问题,提出了一种基于等强度悬臂梁的低频高灵敏度光纤光栅(fiber Bragg grating,FBG)加速度传感器。以悬臂梁厚度与质量块质量为主要参数设计了12组FBG加速度传感器,通过激振器对传感器进行幅频特性、灵敏度及横向抗干扰试验,得到较适合监测桥梁振动的一组传感器,其固有频率为49 Hz,工作频带为0—34 Hz,灵敏度高达664.53 pm/g,线 性 度为99.9%,且横向抗干扰能力强。通过理论推导到试验验证,为桥梁振动提供一种新型有效的监测手段。  相似文献   

8.
介绍了一种新型的基于光纤布拉格光栅的温度不敏感的振动传感器.将光纤光栅倾抖粘贴在直角三角形悬臂梁的侧面,沿垂直方向的振动将导致悬臂梁沿长度方向的曲率周期性变化.悬肴梁弯曲使光纤布拉格光栅带宽展宽,其反射带宽和反射光强随着自由端挠度的变化而改变.在振动测量过程中,以传统的电阻应变片的测量结果作为此光纤光栅振动传感器的参照对比,两者所测得的振动频率相差小于0.5%.此外,由于光纤布拉格光栅的反射带宽和反射光强不随温度改变,所以此振动传感器具有温度不敏感性.  相似文献   

9.
提出了一种基于膜片与菱形结构的光纤布拉格光栅(FBG)加速度传感器,理论分析了传感器的加速度检波机理,推导了其灵敏度和谐振频率表达式。利用ANSYS和MATLAB软件对传感器的结构参数进行了优化设计,得到了尺寸更小但能满足实际应用需求的FBG加速度传感器,构建了有限元模型并仿真了传感系统的振动特性。制备了传感器实物并进行了动静态特性测试。结果表明:在20~90℃温度条件下,FBG传感器具有较好的温度自补偿效果,有效减小FBG中温度对加速度测量的影响;该传感器1阶固有频率约为681.4 Hz,在频率为0~500 Hz范围内,传感器灵敏度与振动信号频率呈良好的线性关系;膜片与菱形结构的组合应用增强了传感器横向抗干扰能力,并使得横向干扰度小于5%。  相似文献   

10.
基于双等强度悬臂梁的光纤光栅加速度振动传感器   总被引:13,自引:13,他引:0  
研制了一种基于双等强度悬臂梁式光纤布 拉格光栅(FBG)振动传感器。首先采用ANSYS软件对 传感器进行数值计算与仿真,得到在各个阻尼比下传感器的幅频特性曲线和相频特性曲 线,不断变化 传感器结构参数,寻找最优谐振频率与加速度灵敏度,从而得到传感器最优结构参数;根据 仿真所得的最 优结构参数,进行传感器加工;利用所加工的振动传感器进行振动台试验研究并对所得实验 数据进行处理, 将处理后的数据与ANSYS软件仿真得到的数据进行比较,结果表明,振动平台所测得的 实验结果与ANSYS 软件仿真结果相吻合,传感器的谐振频率为80.74Hz,可实现50Hz以下低 频振动信号的实时监测,在5~50Hz之间的加速度灵敏度约为20.85pm/m·s-2。  相似文献   

11.
为给传感器节点持续供电,提出之字形压电悬臂梁,与传统直梁结构相比,其等效加大了悬臂梁的长度,降低了固有频率。对之字形悬臂梁结构建立解析模型,对其振动进行了理论分析,通过仿真软件ANSYS对该结构进行了模态分析。仿真结果表明,在微加工工艺的尺寸限制下,8根直臂梁构成的之字形结构悬臂梁,其一阶固有振动频率小于200Hz,符合与环境振动源形成共振的条件,证明了之字形结构的有效性。  相似文献   

12.
光纤布拉格光栅振动传感器研究   总被引:1,自引:0,他引:1  
随着光纤光栅传感技术研究的不断深入和振动测试技术发展需求的不断增大,关于光纤光栅振动传感器的研究工作迅速展开。介绍了基于光纤布拉格光栅(Fiber Bragg Grating, FBG)的振动传感器的原理,然后就不同的结构类型对近几年的FBG振动传感器研究进行了归纳,并着重对悬臂梁式和膜片式结构进行了总结。阐述了同种结构类型的不同光纤光栅封装方式的优缺点,分析了现阶段所使用的FBG振动传感器,并提出了影响其性能优化的四点因素。最后对FBG振动传感器的发展作了进一步展望。  相似文献   

13.
设计了一种基于柔性铰链结构的光纤光栅加速度传感器,进行了结构理论分析,并构建有限元模型仿真分析了传感器的加速度传感特性。基于F-P滤波器构建了具有温度自补偿功能的光纤光栅加速度检测系统,并通过增加反馈控制电路,对F-P滤波器进行反馈控制,实现了系统的零点自温度补偿。对系统的特性进行了实验测试,结果表明:系统对加速度的连续激励信号和冲击激励信号均有良好的动态响应,系统的固有频率为380.0 Hz,动态响应范围可达65.6 dB,频率响应范围为10.0 ~240.0 Hz,灵敏度为236 pm/g,所设计的加速度传感器具有较强的横向抗扰能力,干扰方向灵敏度仅为工作方向灵敏度的3.5%。  相似文献   

14.
采用光纤布拉格光栅制备折射率传感器,研究光纤光栅的折射率传感灵敏度与其包层直径之间的关系。理论分析可得,光栅包层直径越小,Bragg波长的偏移量随环境折射率变化的影响越大,这样就能使实验中光栅所反射的LD光功率变化(传感灵敏度)越明显。利用氢氟酸溶液腐蚀光栅包层的方法,得到不同包层直径的光纤Bragg光栅折射率传感器。实验指出,包层直径减小时,光栅可传感的折射率范围会缩小,而其折射率的传感灵敏度却会增大,如包层直径为8.9 μm时,折射率的检测范围为1.3872~1.4730,其最大灵敏度值达到了224.0320 dBm/RIU。  相似文献   

15.
针对低频振动信号的高精度测量需求,设计了一种基于双光纤光栅的变宽度椭圆铰链式低频加速度传感器.首先建立传感器的结构模型,理论分析了传感器的振动响应特性,给出该传感器的谐振频率及灵敏度的公式.随后搭建了传感单元的数学模型,对传感单元结构的关键尺寸参数进行了优化.另外,利用有限元仿真验证了理论分析结果,最后加工制作了传感器样件,对其进行加速度性能测试.实验结果表明:传感器的谐振频率约为36 Hz,工作频带为0-10 Hz,灵敏度为1496 pm/g.所设计的传感器具有较高的灵敏度、良好的温度补偿能力,能够满足工程中低频振动检测的要求.  相似文献   

16.
针对加速度传感器在振动分析与故障诊断中的需 求,提出了一种基于椭圆铰链的光纤布拉格光栅加速度传感器,椭 圆铰链和质量块组成加速度传感器理论模型的弹簧质量系统。首先,根据传感器结构的力学 模型,推导出了传感器的灵 敏度和谐振频率的计算公式,进而分析了传感器的结构参数对灵敏度和谐振频率的影响;随 后,采用Lingo软件对传感 器参数进行了最优化分析;最后,基于优化结果设计制作了光纤布拉格光栅加速度传感器, 测试了该传感器的灵敏度、 幅频响应和横向抗干扰等性能。结果表明,传感器的谐振频率约为750 Hz,灵敏度约为128 pm/g,横向抗干扰度小于5%,可用于350 Hz以下的低频微弱振动信号的实时监测。  相似文献   

17.
针对悬臂梁式振动传感器进行了研究,主要阐述了传感器的工作原理与理论分析,并对传感器的幅频特性和灵敏度进行了实验研究。实验结果表明,振动传感器的固有频率为90Hz,传感器的灵敏度高达121pm/g(g=9.8m/s2为重力加速度),平坦区域为10~50Hz,振动传感器在低频范围内具有较好的频率响应。最后对传感器的悬臂梁进行了疲劳分析与优化改进,使悬臂梁的疲劳寿命提高了150%。  相似文献   

18.
针对泥石流地声的特性,设计了一种悬臂梁 结构的光纤布拉格光栅(FBG)加速度传感器。理论分析了FBG传感器灵敏度、谐振频率的 影响因素,对传感器 的关键参数进行了优化设计;引入抗弯光纤、高分子超薄涂覆以及CCD解调等新技术,改 善传感器的灵 敏度、串接复用等性能;最后进行了对比测试。实验结果表明:所设计的传感器灵敏度高达 400pm/g,固有频率为310Hz,能很好地满足 泥石流地声监测的要求。  相似文献   

19.
面向生物医学智能装备和软体机器人等领域柔性机构以及高端装备和重大基础设施复杂结构的曲率测量需求,提出一种高适应性柔性曲率传感器。通过将光纤布拉格光栅封装在硅胶基体中,并将硅胶基体与聚氯乙烯薄片贴合,形成基于光纤布拉格光栅的柔性硅胶曲率传感器。采用光纤传感解调系统和标准曲率标定块,实验测得光纤光栅传感器反射谱特征及其随标定块曲率变化规律,分析了光栅波长位移与曲率变化的关系以及传感器灵敏度与嵌入硅胶基体深度的关系。实验结果表明:硅胶-聚氯乙烯基体的曲率传感器可以实现曲率变化实时测量,最高灵敏度可达0.329 2 nm/m-1。随着光纤光栅嵌入深度的增加,传感器灵敏度在0.2~0.35 nm/m-1范围内逐渐增大。在多次重复测量中传感器具有较好的一致性,可用于柔性机构和复杂结构的曲率测量。  相似文献   

20.
设计了一种基于光纤布拉格光栅(fiber Bragg grating,FBG)的微力与微位移双物理量传感单元,采用矩形悬臂梁型弹性体结构以及两片FBG布片方式,提高了力和位移灵敏度,实现了温度补偿,位移灵敏度可通过改变悬臂梁的固定位置和长度进行调整。对传感单元的性能进行了理论分析和实验验证,结果表明:在0~1.2 N测量范围内,力实验灵敏度为889 pm/N,理论和实验的平均相对误差为6.6%,力分辨力为1.1 mN,位移灵敏度随着悬臂梁长度L的增大而减小,位移灵敏度在L为149 mm时为60.7 pm/mm,在L为99 mm时为200.3 pm/mm,位移分辨力为5μm,传感单元的线性度均达0.999以上,保持了优良的线性,可满足不同量程的微力和微位移应用场合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号