首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
为了研究高转速滑动轴承的油膜压力场,利用计算流体动力学软件FLUENT建立动压滑动轴承的油膜流场模型,计算油膜处于层流和湍流状态时的油膜压力分布,比较相同转速条件下轴颈随油膜涡动时的轴承承载能力变化.结果表明:在相同参数条件下,油膜处于湍流状态下的承载能力大于层流状态,模拟结果与前人理论研究一致,证明FLUENT对动压滑动轴承油膜压力分布模拟有效;轴颈随油膜涡动时,轴承承载能力降低,轴承端部泄油量减小,转轴涡动是影响轴承稳定性的主要原因.  相似文献   

2.
滑动轴承的相关研究很多都基于等黏度的情况下,这与轴承的实际工作情况有较大的出入。使用计算流体力学FLUENT通过编写的黏温方程UDF程序进行动压滑动轴承润滑油黏度的计算,并考虑黏温效应对动压滑动轴承性能的影响,比较等黏度与变黏度情况下动压滑动轴承的油膜压力与承载力、油膜的轴向与周向温度分布。结果表明:在考虑黏温效应条件下,轴承的承载力、油膜压力、摩擦力均小于定黏度条件下,这是由于温度升高导致黏度降低,从而减小了油膜静压力和承载力;在轴承轴向方向上,从油膜中心位置向两端部,油膜温度逐渐升高;在轴承圆周方向上,从收敛区到发散区,油膜温度先升高后降低,油膜温度峰值出现在轴承发散区的端部位置。  相似文献   

3.
针对航空发动机齿轮泵滑动轴承复杂工况下存在的润滑性能不清晰、摩擦特性不明朗的问题,将转轴转速升高,分析光滑油膜和带槽油膜压力变化,增大入口供油压力,观察承载力变化,同时,施加并增大轴承偏载。结果表明,转速升高,光滑油膜正压增大、负压减小,带槽油膜的负压降低,承载能力显著增长,入口压力对承载力的影响逐渐减弱。存在临界入口压力,使得处在低于该值的工况,转速越高,无量纲摩擦因数越大。偏载持续增大,极大可能导致轴承油膜破裂、润滑失效。存在偏载临界点,使得处于临界点以下的轴承性能较好,高于该点的轴承性能较差。此外,偏载具有刚度增强和阻尼增强的作用。研究结果为齿轮泵滑动轴承设计研发及其国产化提供理论依据。  相似文献   

4.
运行过程中所受的力场是影响油膜轴承衬套运行可靠性的重要因素。为了提高油膜轴承衬套运行可靠性,分析装配应力对油膜轴承衬套受力的影响。计算衬套和轴承座过盈配合时衬套所受的装配应力、油膜轴承运行过程中油膜对衬套的摩擦力和油膜压力,并运用有限元软件对衬套进行多力加载模拟,获得衬套在多力作用下的应力、应变分布,并与有无装配应力和摩擦力的模拟结果进行对比。结果表明:油膜对衬套的摩擦力对衬套的影响比较小,可以忽略;而油膜轴承衬套在初始情况下的装配应力改变了衬套承载区应力和应变的大小和变化规律,设计油膜轴承衬套时要考虑装配应力的影响,以提高其运行可靠性。  相似文献   

5.
基于 FLUENT 的深浅腔动静压轴承油膜压力研究   总被引:1,自引:0,他引:1  
以具有深浅腔的动静压轴承为研究对象,基于 Gambit 对油膜进行网格划分并建立三维有限元模型,通过FLUENT 仿真得到不同偏心率和转速下轴承的油膜三维压力场分布和静特性参数。计算结果表明:深浅腔动静压轴承在每个浅腔处油膜出现压力峰值,且承载力随偏心率和转速的增加而增加。该仿真方法计算结果与文献数值计算结果相吻合,为进一步研究动静压轴承的其他性能提供了一种新的方法。  相似文献   

6.
赵丽娟  史百胜  张美晨 《机械强度》2019,41(5):1217-1222
为研究不同载荷、转速条件下,低速重载轴承的润滑性能,即油膜厚度、油膜压力及油膜流速的变化情况,利用Abaqus软件建立轴承流固耦合模型,得到油膜厚度在剖面中呈矩形分布,滚动体与内圈之间的油膜厚度小于与外圈之间的油膜厚度。接触区入口处的油膜压力逐渐增大,内滚道接触处的油膜压力大于相应的外滚道油膜压力。流固交面的油膜速度大于自由表面的油膜速度且接触区域的油膜速度最大。随着转速的增加,油膜厚度和油膜压力增加;随着载荷的增加,油膜厚度降低,油膜压力增加。  相似文献   

7.
为减少抽油杆与油管之间的偏磨,建立了收敛楔形间隙在杆管间的液体动压润滑数学模型,依据雷诺方程导出了油膜压力的计算公式,分析了影响油膜力大小的因素.结果表明:在收敛楔形间隙某一高度处,油膜压力沿圆周方向的分布是在间隙最小处油膜压力最大,在间隙最大处油膜压力最小;收敛楔形间隙在某一偏角处,沿轴向方向,随轴向高度的增大,油膜压力逐渐增大,增大到一定数值,油膜压力又逐渐减小.  相似文献   

8.
目前径向滑动轴承的润滑分析一般认为油膜只有正压区,而实际中全周径向滑动轴承的油膜均有负压区存在。基于质量守恒边界条件,对Elrod算法进行改进,得到能自动确定动态边界的控制方程和完整油膜区与空穴区的统一润滑方程;对不同工况下的径向滑动轴承的润滑性能进行数值摸拟,分析空穴效应对滑动轴承润滑性能的影响。结果表明:在相同工况下,计及空穴效应时轴承油膜压力存在区域和分布与Reynolds边界条件的结果相比存在差异;在不同工况下,空穴效应对滑动轴承油膜压力分布和润滑性能存在不同的影响,如使轴承端泄流量明显变化、摩擦功耗略有增加。可见,空穴效应对径向滑动轴承润滑性能的影响不一定都是有利的。因此,在进行径向滑动轴承设计时,综合考虑不同工况下空穴效应对径向滑动轴承润滑性能的影响是非常必要的。  相似文献   

9.
提出一种求解表面织构动压轴承油膜力的解析模型。基于Sommerfeld油膜边界,通过分离变量的方法,求解表面织构动压滑动轴承二阶偏微分Reynolds方程,得到表面织构动压滑动轴承油膜压力解析式。以圆形凹坑轴承为例,在油膜区域通过积分求得织构轴承的油膜力,分析织构参数对油膜压力的影响,研究发现,表面织构位于收敛区域(升压区)的轴承,其润滑与承载性能优于表面织构位于发散区域(降压区)的轴承、全织构轴承以及光滑轴承。对比了提出的解析模型与FDM和CFD模型在不同长径比和偏心率下的计算结果,结果表明,提出的解析模型能准确地描述表面织构动压滑动轴承的油膜力,且计算结果同FDM和CFD模型计算结果基本一致,验证了该模型的正确性。  相似文献   

10.
通过建立有无考虑气穴影响的椭圆轴承受力模型,应用Fluent模拟分布有无考虑气穴影响的油膜压力分布,分析表明考虑气穴影响时椭圆轴承压力分布结果更合理。分析考虑气穴影响时椭圆轴承在不同轴颈转速和供油压力下压力场分布规律,结果表明:转速越高,椭圆轴承上、下瓦油膜压力和x、y方向的承载力越高;改变供油压力对下瓦油膜压力基本没影响,但上瓦油膜压力和x方向承载力随供油压力增大而增大,y方向承载力随供油压力增大而减小。  相似文献   

11.
以某隧道工程实际工况条件为例,建立盾构机主驱动轴承载荷分布计算模型和等温线接触弹流润滑模型,通过数值分析得到极限工况和占比99.9%的工况条件下盾构机主驱动轴承的油膜厚度及油膜压力分布;依据实际工况条件分析不同工况对轴承油膜厚度、油膜压力的影响规律,以及滚子所处位置不同时滚子负载与油膜压力和膜厚之间的变化关系。结果表明:不同工况下主轴承油膜厚度、油膜压力分布规律相似,均出现二次峰值;同一工况下,随着滚子于主轴承所处位置不同,油膜压力及膜厚最值随滚子负载的增大而减小;同一位置处二者最值随主轴承受力的增大而减小。  相似文献   

12.
马艳艳 《润滑与密封》2022,47(12):112-116
根据应力偶流体动态润滑轴承雷诺方程,运用数值计算方法研究应力偶参数对轴承润滑性能的影响。针对某柴油机轴承,分别计算采用牛顿流体和非牛顿应力偶流体润滑时的油膜压力分布和轴心轨迹。结果表明:与牛顿流体润滑相比,应力偶流体润滑时轴承的油膜压力增加,且随应力偶参数的增加,最大油膜压力出现在轴承角度增大的方向;2种润滑条件下,所计算得到的轴心轨迹形状类似,不同之处在于牛顿流体润滑时其轴心轨迹离轴承的中心比较远,而应力偶流体润滑条件下轴心轨迹随参数增加向其中心靠近且最小油膜厚度明显增大。研究表明,应力偶流体润滑与牛顿流体相比提高了油膜压力,改善了轴心轨迹,且应力偶参数越大应力偶效应越显著。  相似文献   

13.
油水两相流对滑动轴承油膜压力的影响   总被引:1,自引:0,他引:1  
研究建立了一台适用于测试油水两相流润滑工况下滑动轴承油膜压力的实验装置。实验研究了润滑油混入水滴后对滑动轴承油膜压力的影响规律,得出了若干规律性的结论。  相似文献   

14.
以新型动静压差速转台为研究对象,为了改善油膜存在的负压问题,提出两种改进方案。方案Ⅰ是在静压腔封油边处建立流量补偿孔,方案Ⅱ是在动压进油槽处增加进油孔。利用计算流体力学软件对转台油膜压力场、温度场进行数值仿真,并对不同转速下改进前后油膜承载力、进口流量、最低压力和最大温升进行对比分析。结果表明:两种改进方案都能有效改善负压,油膜特性均优于改进前,在改善负压上适用的转速范围更宽。  相似文献   

15.
为研究困油压力对轴承润滑状态的影响,在一个困油周期内,基于纯流体润滑状态设计要求,提出轴承-轴颈间所必需的承载量系数计算公式;依据泵样机参数,提出轴承-轴颈间所能提供的承载量系数的多项式拟合式;由所必需的承载量系数公式等于所能提供的承载量系数的定值优化方法,建立出困油压力与最小油膜厚度间的对应关系。通过一案例,对是否考虑困油压力的润滑状态计算结果进行比较和分析。案例分析结果表明:困油压力导致径向力增加45%~59%;导致最小油膜厚度降低19.6%~24.3%;困油压力造成轴承-轴颈间处于混合润滑状态,达不到原始的纯流体润滑状态设计要求。因此,困油压力对润滑状态影响较大,在泵轴设计中应充分考虑困油压力的影响,从而在结构上尽量缓解困油压力。  相似文献   

16.
滑动轴承广泛应用于旋转机械中,其静动态参数对旋转机械的运转有很大影响。确定滑动轴承的静动态参数依赖于轴承的油膜压力分布,Reynolds方程是油膜压力计算的基础。对于具体轴承参数计算,传统方法是利用已知的给定偏心率和宽径比下的轴承静动态参数进行曲线拟合,通过反推实际轴承的偏心率和偏位角,然后进行压力分布计算。这种逆运算不太方便。基于有限差分法,采用MATLAB软件编程计算,利用实际轴承已知外力和宽径比直接求解完整二维流动Reynolds方程得到油膜压力分布曲线,进一步利用改进方法设计计算实际轴承参数,取得较好的计算精度,使圆瓦轴承参数计算更为简便。  相似文献   

17.
高速轻载涡轮增压器转子系统的入口油温在长周期变转速运行条件下会产生动态变化,从而改变转子系统振动特性甚至导致非线性振动事故。以某型汽油机用高速轻载涡轮增压器转子为研究对象,分析浮环轴承内油膜最小厚度与偏心率随入口油温参数的变化规律,构建涡轮增压器转子-浮环轴承系统动力学有限元模型,采用Newmark积分法分析转子系统的非线性瞬态响应,结合涡轮增压器升速实验,得到不同入口油温下转子系统三维振动瀑布图与Colormap频谱图,探究入口油温对转子系统振动响应特性的影响。结果表明:随着入口油温从50℃增至130℃时,内油膜最小厚度会减少,环速比与偏心率会增加,内油膜振荡幅值逐渐降低,但出现内油膜振荡与外油膜涡动的轴颈转速点会提前约30%,且外油膜涡动幅值会逐步增加。综合内外油膜涡动与振动幅值,入口油温约为90℃时转子振动情况较好。结论可为设计具有智能抗振性能的高速轻载涡轮增压器转子系统的运行参数提供理论参考。  相似文献   

18.
李超  马庆镇  李连升  董朵 《润滑与密封》2023,48(10):182-189
以某发动机惰齿轮轴承为研究对象,采用一维动力学方法进行多工况计算,针对油孔布置、载荷方向、载荷大小、轴承转速4种因素,分析滑动轴承润滑油流量、最小油膜厚度、偏位角、最大油膜压力4个动压特性参数的变化规律。结果表明:油孔布置和载荷方向主要对润滑油流量有明显影响,而对其他3个动压特性参数影响较小;油孔数量越多,油孔在圆周方向上越靠近油膜厚度最大处,则润滑油流量越大;油孔分布越均匀,因载荷方向改变引起的流量波动越小;载荷大小和轴承转速对4个动压特性参数都有明显影响;随载荷增加,最大油膜压力大致呈线性增加,而其他3种动压特性的变化速率降低;随转速增大,最大油膜压力减小的速率逐渐降低,而其他3种动压特性大致呈线性增加。  相似文献   

19.
为了提高汽轮机转子系统中支承轴承的油膜刚度,以三瓦油膜支承可倾瓦轴承为研究对象,研究静压孔相对位置对轴承承载性能的影响规律。建立了油膜支承可倾瓦轴承油膜润滑模型,并运用计算流体动力学方法数值求解三维N-S方程,揭示了不同静压孔相对位置下轴承压力分布、最小膜厚、偏心率、刚度等性能参数的变化规律。分析结果表明:在载荷为890 N的情况下,改变孔的位置可以提高轴承油膜刚度;当静压孔相对位置γ=5°左右时,孔位置接近油膜最大压力分布区,与γ=0°时相比,最小膜厚和偏心率分别减小9.8%和48%,主刚度kyy、kxx接近原结构的1.4倍和1.1倍,此时静压孔位置为相对最优位置区域。依据分析结果开发了新型油膜支承可倾瓦轴承(γ=5°),通过试验对比分析了普通滑动轴承与新型油膜支承可倾瓦轴承的综合性能,结果表明,高转速时所开发的新型油膜支承可倾瓦轴承具有更好的承载性能与减振性能。研究结果对油膜支承可倾瓦轴承的性能分析具有一定的参考价值,设计轴承静压孔时可根据油膜压力分布规律对其优化以提高轴承性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号