首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shear rheological properties of polystyrene (PS)/nano‐CaCO3 composites were studied to determine the plasticization of nano‐CaCO3 to PS. The composites were prepared by melt extrusion. A poly(styrene–butadiene–styrene) triblock copolymer (SBS), a poly(styrene–isoprene–styrene) triblock copolymer (SIS), SBS‐grafted maleic anhydride (SBS–MAH), and SIS‐grafted maleic anhydride were used as modifiers or compatibilizers. Because of the weak interaction between CaCO3 and the PS matrix, the composites with 1 and 3 phr CaCO3 loadings exhibited apparently higher melt shear rates under the same shear stress with respect to the matrix polymer. The storage moduli for the composites increased with low CaCO3 concentrations. The results showed that CaCO3 had some effects on the compatibility of PS/SBS (or SBS–MAH)/CaCO3 composites, in which SBS could effectively retard the movement of PS chain segments. The improvement of compatibility, due to the chemical interaction between CaCO3 and the grafted maleic anhydride, had obvious effects on the rheological behavior of the composites, the melt shear rate of the composites decreased greatly, and the results showed that nano‐CaCO3 could plasticize the PS matrix to some extent. Rheological methods provided an indirect but useful characterization of the composite structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

2.
The factors influencing the mechanical properties of styrene–butadiene–styrene block copolymer (SBS) composites filled with liquid polybutadiene (LB)‐surface‐treated calcium carbonate (CaCO3) were investigated with respect to the molecular structure of the LB, the amount of the LB adsorbed on the CaCO3 surface, the heat treatment conditions, and the surface treatment method. The mechanical properties, such as the modulus, tensile strength at break, tear strength, storage modulus, and tension set, of the SBS composites were improved remarkably through the filling of CaCO3 surface‐treated with a carboxylated LB with a high content of 1,2‐double bonds. The heat treatment of LB–CaCO3 in air was also effective in enhancing such properties. When SBS, CaCO3, and LB were directly blended (with the integral blend method), secondary aggregation of CaCO3 took place, and the mechanical properties of the composite were significantly lower. In the integral blend method, LB functioned as a plasticizer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
The article surveyed the fabrication of polystyrene (PS)/nano‐CaCO3 foams with unimodal or bimodal cellular morphology from extrusion foaming using supercritical carbon dioxide (sc‐CO2). In order to discover the factors influenced the cell structure of PS/nano‐CaCO3 foams, the effects of die temperature, die pressure, and nano‐CaCO3 content on cell size, density, and morphology were investigated detailed. The results showed that the nano‐CaCO3 content affected the cell size and morphology of PS/nano‐CaCO3 foams significantly. When the die temperature and pressure was 150°C and 18 MPa, respectively, the foams with 5 wt% nano‐CaCO3 exhibited the unimodal cellular morphology. As the nano‐CaCO3 content increased to 20 wt%, a bimodal cell structure of the foams could be obtained. Moreover, it was found that the bimodal structure correlated more strongly with the pressure drop than the foaming temperature. The article revealed that unimodal or bimodal cellular morphology of PS/nano‐CaCO3 foams could be achieved by changing the extrusion foaming parameters and nano‐CaCO3 content. POLYM. COMPOS., 37:1864–1873, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
Nanocomposites of nanosized CaCO3/SBS/PP were prepared by using twin‐screw and single‐screw extruder. By adding nanosized CaCO3 particles into SBS/PP blend, the notched impact strength, flexural modulus, and tensile strength of the composites can be improved, whereas, by adding microsized CaCO3 particles into SBS/PP blend, the notched impact strength of the composite is decreased markedly. At nanosized CaCO3 content of 16 phr (parts per hundred PP resin by weight), the impact strength of nanosized CaCO3/SBS/PP composite reaches 56.55 KJ/m2, which is 1.27 times that of SBS/PP blend. At nanosized CaCO3 content of 4 phr, the tensile strength of the composites reaches 31.3 MPa, which is 1.23 times that of SBS/PP blend. The maximum and balanced torque of the composites improves significantly by the addition of CaCO3 nanoparticles. The increased shear force during compounding continuously breaks down SBS particles, resulting in the reduction of the SBS particles size, and improving the dispersion of SBS particles in PP matrix. Thus the toughening effect of SBS on matrix was improved. Simultaneously, the existence of SBS provides the matrix with a good intrinsic toughness, satisfying the condition that nanosized inorganic particle of CaCO3 efficiently toughens polymer matrix. The synergistic toughening function of nanosized CaCO3 and SBS on PP matrix was exhibited. POLYM. ENG. SCI. 47:201–206, 2007. © 2007 Society of Plastics Engineers  相似文献   

5.
The viscoelastic relaxation of linear styrene–butadiene–styrene triblock copolymer (l‐SBS) and star styrene–butadiene–styrene triblock copolymer (s‐SBS) with four arms were investigated with differential scanning calorimetry and dynamic rheological measurements. Three characteristic viscoelastic responses of l‐SBS and s‐SBS in the plot of the loss tangent (tan δ) and temperature at different frequencies (ω's), which corresponded to the relaxation of the polybutadiene (PB) block (peak I), the glass transition of the polystyrene (PS) phase (peak II), and the mutual diffusion between the PB blocks and PS blocks (peak III), respectively, were observed in the experimental range. Although ω was 0.1 rad/s, a noticeable peak III was gained for both l‐SBS and s‐SBS. The dynamic storage modulus (G′) of l‐SBS showed two distinct types of behavior, depending on the temperature. At temperature (T) < T2 (where T2 is the temperature corresponding to peak II), G′ of l‐SBS displayed a very weak ω dependency. In contrast, at T > T2, G′ decayed much more rapidly. However, G′ of s‐SBS displayed a very weak ω dependency at both T < T2 and T > T2. Only near T2 did s‐SBS decay with ω a little sharply. These indicated, in contrast to l‐SBS, that s‐SBS still exhibited more elasticity even at T > T2 because of its crosslinking point between the PB blocks (the star structure). In the lower ω range, l‐SBS exhibited a stronger peak III than s‐SBS despite the same styrene content for l‐SBS and s‐SBS. The high tan δ value of peak III for l‐SBS was considered to be related to the internal friction among the PB blocks or the whole l‐SBS chain, not the PS blocks. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The domain structure and miscibility in the solid state of a series of blends of styrene‐butadiene‐styrene (SBS) block copolymers and styrene‐glycidyl methacrylate (PS‐GMA) statistical copolymers with varying molecular weights and compositions were studied using small angle X‐ray scattering and dynamic mechanical thermal analysis. Depending on the molecular characteristics of each component, different types and degrees of solubilization of PS‐GMA in SBS were found which, in addition to the initially SBS phase morphology, lead to materials with multiphase domain morphologies with differences in size and structure. The degree of solubilization of PS‐GMA into the PS domains of SBS was found to be higher for blends containing PS‐GMA with lower molecular weight (Mw = 18 100 g mol?1) and lower GMA content (1 wt%) and/or for SBS with higher PS content (39 wt%) and longer PS blocks (Mw = 19 600 g mol?1). Localized solubilization of PS‐GMA in the middle of PS domains of SBS was found to be the most probable to occur for the systems under study, causing swelling of PS domains. However, uniform solubilization was also observed for SBS/PS‐GMA blends containing SBS with composition in the range of a morphological transition (PS block Mw = 19 600 g mol?1 and 39 wt% of PS) causing a morphological transition in the SBS copolymer (cylinder to lamella). Copyright © 2006 Crown in the right of Canada. Published by John Wiley & Sons, Ltd  相似文献   

7.
The mechanical, thermal, rheological, and morphological properties of polypropylene (PP)/polystyrene (PS) blends compatibilized with styrene–isoprene–styrene (SIS), styrene–butadiene–styrene (SBS), and styrene–butadiene–rubber (SBR) were studied. The incompatible PP and PS phases were effectively dispersed by the addition of SIS, SBS, and SBR as compatibilizers. The PP/PS blends were mechanically evaluated in terms of the impact strength, ductility, and tensile yield stress to determine the influence of the compatibilizers on the performance properties of these materials. SIS‐ and SBS‐compatibilized blends showed significantly improved impact strength and ductility in comparison with SBR‐compatibilized blends over the entire range of compatibilizer concentrations. Differential scanning calorimetry indicated compatibility between the components upon the addition of SIS, SBS, and SBR by the appearance of shifts in the melt peak of PP toward the melting range of PS. The melt viscosity and storage modulus of the blends depended on the composition, type, and amount of compatibilizer. Scanning electron microscopy images confirmed the compatibility between the PP and PS components in the presence of SIS, SBS, and SBR by showing finer phase domains. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 266–277, 2003  相似文献   

8.
As novel piezoelectric materials, carbon‐reinforced polymer composites exhibit excellent piezoelectric properties and flexibility. In this study, we used a styrene–butadiene–styrene triblock copolymer covalently grafted with graphene (SBS‐g‐RGO) to prepare SBS‐g‐RGO/styrene–butadiene–styrene (SBS) composites to enhance the organic solubility of graphene sheets and its dispersion in composites. Once exfoliated from natural graphite, graphene oxide was chemically modified with 1,6‐hexanediamine to functionalize with amino groups (GO–NH2), and this was followed by reduction with hydrazine [amine‐functionalized graphene oxide (RGO–NH2)]. SBS‐g‐RGO was finally obtained by the reaction of RGO–NH2 and maleic anhydride grafted SBS. After that, X‐ray diffraction, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and other methods were applied to characterize SBS‐g‐RGO. The results indicate that the SBS molecules were grafted onto the graphene sheets by covalent bonds, and SBS‐g‐RGO was dispersed well. In addition, the mechanical and electrical conductivity properties of the SBS‐g‐RGO/SBS composites showed significant improvements because of the excellent interfacial interactions and homogeneous dispersion of SBS‐g‐RGO in SBS. Moreover, the composites exhibited remarkable piezo resistivity under vertical compression and great repeatability after 10 compression cycles; thus, the composites have the potential to be applied in sensor production. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46568.  相似文献   

9.
CaCO3/acrylonitrile‐butadiene‐styrene (ABS) and CaCO3/ethylene‐vinyl acetate copolymer (EVA)/ABS nanocomposites were prepared by melting‐blend with a single‐screw extruder. Mechanical properties of the nanocomposites and the dispersion state of CaCO3 particles in ABS matrix were investigated. The results showed that in CaCO3/EVA/ABS nanocomposites, CaCO3 nanoparticles could increase flexural modulus of the composites and maintain or increase their impact strength for a certain nano‐CaCO3 loading range. The tensile strength of the nanocomposites, however, was appreciably decreased by adding CaCO3 nanoparticles. The microstructure of neat ABS, CaCO3/ABS nanocomposites, and CaCO3/EVA/ABS nanocomposites was observed by scanning electron microscopy. It can be found that CaCO3 nanoparticles were well‐dispersed in ABS matrix at nanoscale. The morphology of the fracture surfaces of the nanocomposites revealed that when CaCO3/EVA/ABS nanocomposites were exposed to external force, nano‐CaCO3 particles initiated and terminated crazing (silver streak), which can absorb more impact energy than neat ABS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
End amino, carboxylic acid, and hydroxyl functionalized styrene–butadiene–styrene (SBS) triblock copolymers were prepared with 1,5‐diazabicyclo[3.1.0]hexane, carbon dioxide, and epoxy ethane as capping agents, respectively. The effects of the end polar groups on the morphology and dynamic mechanical properties were investigated. Transmission electron microscopy images suggested that the group at the end of the polystyrene (PS) segment made the morphology of the PS domains disordered and incompact. Dynamic mechanical results showed that the storage and loss modulus increased after SBS was end‐functionalized. End amino and carboxylic acid groups improved the compatibility and storage stability of SBS‐modified asphalt. However, the effect of the end‐hydroxyl group on the improvement of the storage stability of SBS‐modified asphalt was not obvious. The differential scanning calorimetry analysis of SBS‐modified asphalt further showed that the compatibility and storage stability of SBS‐modified asphalt were improved by the attachment of amino or carboxylic acid groups through the anionic polymerization method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 8–16, 2007  相似文献   

11.
Grafting of maleic anhydride (MA) onto styrene–butadiene–styrene triblock copolymer (SBS) was carried out by free radical polymerization using supercritical carbon dioxide (SC CO2) as a solvent of MA and swelling agent of SBS. The effect of various factors such as monomer concentration, initiator concentration, SC CO2 pressure, and reaction time on grafting ratio was studied. SBS and the product (SBS‐g‐MA) were characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). GPC data showed that the molecular weight of SBS‐g‐MA is bigger than that of SBS. DSC testing indicated that the glass transition temperature (Tg) of SBS‐g‐MA is higher than that of SBS. By SEM photo, we can observe that some particles which contain more oxygen atom grew out from the surface of SBS‐g‐MA when grafting ratio reached at 5.6%, and the amount and diameter of particles increased with increasing of grafting ratio. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4425–4429, 2006  相似文献   

12.
Biodegradable foams were successfully prepared from calcium carbonate reinforced poly(propylene carbonate) (PPC/CaCO3) composites using chemical foaming agents. The incorporation of inexpensive CaCO3 into PPC provided a practical way to produce completely biodegradable and cost‐competitive composite foams with densities ranging from 0.05 to 0.93 g/cm3. The effects of foaming temperature, foaming time and CaCO3 content on the fraction void, cell structure and compression property of the composite foams were investigated. We found that the fraction void was strongly dependent on the foaming conditions. Morphological examination of PPC/CaCO3 composite foams revealed that the average cell size increased with increasing both the foaming temperature and the foaming time, whereas the cell density decreased with these increases. Nevertheless, the CaCO3 content showed opposite changing tendency for the average cell size and the cell density because of the heterogeneous nucleation. Finally the introduction of CaCO3 enhanced the compressive strength of the composite foams dramatically, which was associated with well‐developed cell morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5240–5247, 2006  相似文献   

13.
This work aims at studying the toughening process of poly(butylene terephthalate) (PBT) through its blends with styrene‐butadiene‐styrene block copolymers (SBS), in the presence of poly(styrene‐ran‐glicydil methacrylate) (PS‐GMA) as reactive compatibilizer. High values of impact strength were attained for PBT/SBS blends without the compatibilizer; however, this improvement is achieved for blends with SBS having similar viscosity compared to PBT, at high SBS content (40 wt %) and for blends prepared under specific processing conditions. The efficiency of the in situ compatibilization of PBT/SBS blends by PS‐GMA was found to be strongly dependent on the SBS and PS‐GMA molecular characteristics. Better compatibilizing results were observed through fine phase morphologies and lower ductile to brittle transition temperatures (DBTT) as the interfacial interaction and stability of the in situ formed compatibilizer are maximized, that is, when the miscibility between SBS and PS‐GMA and reaction degree between PBT and PS‐GMA are maximized. For the PBT/SBS/PS‐GMA blends under study, this was found when it is used the SBS with higher polystyrene content (38 wt %) and with longer PS blocks (Mw = 20,000 g mol?1) and also the PS‐GMA with moderate GMA contents (4 wt %) and with molecular weight similar to the critical one for PS entanglements (Mc = 35,000 g mol?1). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5795–5807, 2006  相似文献   

14.
Polystyrene (PS)/calcium carbonate (CaCO3) nanocomposites were prepared by in situ polymerization in the presence of maleic anhydride (MA). The composites were characterized by Fourier transform infrared spectra, gel permeation chromatography, differential scanning calorimetry, controlled stress rheometer, scanning electron microscope (SEM), small‐angle X‐ray scattering (SAXS), and mechanical test. Results show that the copolymer of styrene (St) and MA formed during the polymerization acts as a compatibilizer between PS and nanometer calcium carbonate (nano‐CaCO3) particles, resulting in an increase in the glass transition temperature of the composite. The complex modulus and the impact strength of the PS/nano‐CaCO3 composite show an increase with the addition of MA on account of the enhanced interfacial adhesion and the increased molecular weight. SEM and SAXS analyses indicate that a finer dispersion of nanoparticles and an increased homogeneity of the PS/nano‐CaCO3 composites are obtained with application of a small amount of MA. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci., 2013  相似文献   

15.
Because of the importance of the maltene–polymer interaction for the better performance of polymer‐modified asphalts, this article reports the effects of the molecular characteristics of two commercial poly(styrene‐block‐butadiene‐block‐styrene‐block) (SBS) polymers and their partially hydrogenated derivatives [poly{styrene‐block[(butadiene)1?x–(ethylene‐co‐butylene)x]‐block‐styrene‐block} (SBEBS)] on the morphology and rheological behavior of maltene–polymer blends (MPBs) with polymer concentrations of 3 and 10% (w/w). Each SBEBS and its parent SBS had the same molecular weight and polystyrene block size, but they differed from each other in the composition of the elastomeric block, which exhibited the semicrystalline characteristics of SBEBS. Maltenes were obtained from Ac‐20 asphalt (Pemex, Salamanca, Mexico), and the blends were prepared by a hot‐mixing procedure. Fluorescence microscopy images indicated that all the blends were heterogeneous, with polymer‐rich and maltene‐rich phases. The rheological behavior of the blends was determined from oscillatory shear flow data. An analysis of the storage modulus, loss modulus, complex modulus, and phase angle as a function of the oscillatory frequency at various temperatures allowed us to conclude that the maltenes behaved as pseudohomogeneous viscoelastic materials that could dissipate stress without presenting structural changes; moreover, all the MPBs were more viscoelastic than the neat maltenes, and this depended on both the characteristics and amount of the polymer. The MPBs prepared with SBEBS were more viscoelastic and possessed higher elasticity than those prepared with SBS. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A nanosize CaCO3 filler was synthesized by an in situ deposition technique, and its size was confirmed by X‐ray diffraction. CaCO3 was prepared in three different sizes (21, 15, and 9 nm). Styrene–butadiene rubber (SBR) was filled with 2–10 wt % nano‐CaCO3 with 2% linseed oil as an extender. Nano‐CaCO3–SBR rubber composites were compounded on a two‐roll mill and molded on a compression‐molding machine. Properties such as the specific gravity, swelling index, hardness, tensile strength, abrasion resistance, modulus at 300% elongation, flame retardancy, and elongation at break were measured. Because of the reduction in the nanosize of CaCO3, drastic improvements in the mechanical properties were found. The size of 9 nm showed the highest increase in the tensile strength (3.89 MPa) in comparison with commercial CaCO3 and the two other sizes of nano‐CaCO3 up to an 8 wt % loading in SBR. The elongation at break also increased up to 824% for the 9‐nm size in comparison with commercial CaCO3 and the two other sizes of nano‐CaCO3. Also, these results were compared with nano‐CaCO3‐filled SBR without linseed oil as an extender. The modulus at 300% elongation, hardness, specific gravity, and flame‐retarding properties increased with a reduction in the nanosize with linseed oil as an extender, which helped with the uniform dispersion of nano‐CaCO3 in the rubber matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2563–2571, 2005  相似文献   

17.
Nano‐calcium carbonate (nano‐CaCO3) was used in this article to fill acrylonitrile–butadiene–styrene (ABS)/poly(methyl methacrylate) (PMMA), which is often used in rapid heat cycle molding process (RHCM). To achieve better adhesion between nano‐CaCO3 and ABS/PMMA, nano‐CaCO3 particles were modified by using titanate coupling agent, aluminum–titanium compound coupling agent, and stearic acid. Dry and solution methods were both utilized in the surface modification process. ABS/PMMA/nano‐CaCO3 composites were prepared in a corotating twin screw extruder. Influence of surface modifiers and surface modification methods on mechanical and flow properties of composites was analyzed. The results showed that collaborative use of aluminum–titanium compound coupling agent and stearic acid for nano‐CaCO3 surface modification is optimal in ABS/PMMA/nano‐CaCO3 composites. Coupling agent can increase the melt flow index (MFI) and tensile yield strength of ABS/PMMA/nano‐CaCO3 composites. The Izod impact strength of composites increases with the addition of titanate coupling agent up to 1 wt %, thereafter the Izod impact strength shows a decrease. The interfacial adhesion between nano‐CaCO3 and ABS/PMMA is stronger by using solution method. But the dispersion uniformity of nano‐CaCO3 modified by solution method is worse. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Bio‐based calcium carbonate nanoparticles (CaCO3) were synthesized via size reduction of eggshell powder using mechanical attrition followed by high intensity ultrasonic irradiation. The transmission electron microscopic (TEM) and BET surface area measurements show that these particles are less than 10 nm in size and a surface area of ~44 m2/g. Bio‐based nanocomposites were fabricated by infusion of different weight fractions of as‐prepared CaCO3 nanoparticles into Polylite® 31325‐00 resin system using a non‐contact Thinky® mixing method. As‐prepared bio‐nanocomposites were characterized for their thermal and mechanical properties. TEM studies showed that the particles were well dispersed over the entire volume of the matrix. Thermal analyses indicated that the bio‐nanocomposites are thermally more stable than the corresponding neat systems. Nanocomposite with 2% by weight loading of bio‐CaCO3 nanoparticles exhibited an 18°C increase in the glass transition temperature over the neat Polylite 31325 system. Mechanical tests have been carried out for both bio‐nanocomposites and neat resin systems. The compression test results of the 2% Bio‐CaCO3/Polylite 31325 nanocomposite showed an improvement of 14% and 27% in compressive strength and modulus respectively compared with the neat system. Details of the fabrication procedure and thermal and mechanical characterizations are presented in this article. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1442–1452, 2013  相似文献   

19.
Rigid polyurethane–clay nanocomposite foams considered in this work are made with different clay types and for different clay concentrations. The densities of the foams are in the range of 140–160 kg/m3 with possible application as structural materials and for underwater buoyancy‐related uses. Wide‐angle X‐ray diffraction and transmission electron microscopy studies confirm the formation of nanocomposites. The compressive modulus and the storage modulus of the foams increase and the mean cell size decreases with addition of clay. However, the hydraulic resistance of the nanocomposite foams, a measure of the strength of the foam lamellae, is lower than that of the foams without clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2802–2809, 2007  相似文献   

20.
Effect of compatibilization of styrene–butadiene–styrene (SBS) block copolymer in polypropylene/polystyrene (PP/PS) blends was studied by means of small angle X‐ray scattering (SAXS) and scanning electron microscope (SEM). According to SAXS, a certain amount of SBS was located at the interface in all the analyzed samples, forming the relatively thicker interface layer penetrating into homopolymers, and the thickness of the interface layer was quantified in terms of Porod light scattering theory. The incorporation of SBS into PP/PS blends resulted in a decrease in domain size following an emulsification curve as well as an uniform size distribution, and consequently, a fine dispersion of PP domains in the PS matrix. This effect was more pronounced when the concentration of SBS was higher. A critical concentration of SBS of 15% above which the interface layer approaches to saturation and domain size attains a steady‐state was observed. Further, the morphology fluctuation of unetched fracture surface of umcompatibilized and compatibilized blends was analyzed using an integral constant Q based on Debye‐Bueche light scattering theories. Variation of Q as a function of the concentration of SBS showed that, due to the penetrating interface layer, adhesion between phases was improved, making it possible for applied stress to transfer between phases and leading to more uniform stress distribution when blends were broken; accordingly, a more complicated morphology fluctuation of fracture surface appeared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:365–370, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号