首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Blending is an effective method for improving polymer properties. However, the problem of phase separation often occurs due to incompatibility of homopolymers, which deteriorates the physical properties of polyblends. In this study, isotactic polypropylene was blended with low-density polyethylene. Crosslinking agent and copolymers of propylene and ethylene (either random copolymer or block copolymer) were added to improve the interfacial adhesion of PP/LDPE blends. The tensile strength, heat deflection temperature, and impact strength of these modified PP/PE blends were investigated. The microstructures of polyblends have been studied to interpret the mechanical behavior through dynamic viscoelasticity, wide-angle X-ray diffraction, differential scanning calorimetry, picnometry, and scanning electron microscopy. The properties of crosslinked PP/PE blends were determined by the content of crosslinking agent and processing method. For the material blended by roll, a 2% concentration of peroxide corresponded to a maximum tensile strength and minimum impact strength. However, the mechanical strength of those products blended by extrusion monotonously decreased with increasing peroxide content because of serious degradation. The interfacial adhesion of PP/PE blends could be enhanced by adding random or block copolymer of propylene and ethylene, and the impact strength as well as ductility were greatly improved. Experimental data showed that the impact strength of PP/LDPE/random copolymer ternary blend could reach as high as 33.3 kg · cm/cm; however, its rigidity and tensile strength were inferior to those of PP/LDPE/block copolymer blend.  相似文献   

2.
Biaxially oriented films of blends of high-density polyethylene (HDPE) with polypropylene (PP) homopolymer and PP copolymers prepared by twin-screw extrusion and lab-stretcher have been investigated by scanning electron microscopy (SEM), polarized microscopy, differential-scanning calorimeter, and universal testing machine. Three different kinds of PP copolymers were used: (i) ethylene–propylene (EP) random copolymer; (ii) ethylene–propylene (EP) block copolymer; (iii) ethylene–propylene–buttylene (EPB) terpolymer. In the SEM study of the morphology of films of HDPE with various PP blends, phase separation is observed between the PP phase and the HDPE phase for all blends and compositions. In all blends, HDPE serves to reduce the average spherulites size, probably acting as a nucleating agent for PP. The reduction of spherulite size appeared most significantly in the blend of EPB terpolymer and HDPE. A large increase of crystallization temperature was found in the blend of EPB terpolymer and HDPE compared with the unblended EPB terpolymer. For the blend of EPB terpolymer and HDPE, the improvement of tensile strength and modulus is observed with an increase of HDPE content, and this can be considered as a result of the role of HDPE in reducing average spherulite size. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
成核剂对增韧聚丙烯力学性能的影响   总被引:11,自引:0,他引:11  
谢飞  周文 《中国塑料》2000,14(11):76-80
主要研究成核剂种类及用量对乙烯-辛烯共聚物(POE)增韧聚丙烯(PP)力学性能的影响。研究表明:随着成核剂NA1的加入,PP/POE共混物的透明性、冲击强度、弯曲强度、拉伸屈服强度均明显提高,研制的改性PP的透明性、韧性和刚性得到了平衡。  相似文献   

4.
Compatibilizing effects of ethylene/propylene (EPR) diblock copolymers on the morphology and mechanical properties of immiscible blends produced from recycled low‐density polyethylene (PE‐LD) and high‐density polyethylene (PE‐HD) with 20 wt.‐% of recycled poly(propylene) (PP) were investigated. Two different EPR block copolymers which differ in ethylene monomer unit content were applied to act as interfacial agents. The morphology of the studied blends was observed by scanning‐ (SEM) and transmission electron microscopy (TEM). It was found that both EPR copolymers were efficient in reducing the size of the dispersed phase and improving adhesion between PE and PP phases. Addition of 10 wt.‐% of EPR caused the formation of the interfacial layer surrounding dispersed PP particles with the occurrence of PE‐LD lamellae interpenetration into the layer. Tensile properties (elongation at yield, yield stress, elongation at break, Young's modulus) and notched impact strength were measured as a function of blend composition and chemical structure of EPR. It was found that the EPR with a higher content of ethylene monomer units was a more efficient compatibilizer, especially for the modification of PE‐LD/PP 80/20 blend. Notched impact strength and ductility were greatly improved due to the morphological changes and increased interfacial adhesion as a result of the EPR localization between the phases. No significant improvements of mechanical properties for recycled PE‐HD/PP 80/20 blend were observed by the addition of selected block copolymers.  相似文献   

5.
讨论了乙烯质量分数[ω(C2H4)]对无规共聚透明聚丙烯(PP)性能的影响,并在保证透明度的同时,提出了其加入范围。试验证明,随着ω(C2H4)的增加,无规共聚PP的屈服拉伸强度、热变形温度降低,冲击强度有了明显的提高,雾度有降低趋势。含有较高ω(C2H4)(如大于4%)的PP,具有相对较低的雾度(38%左右),是透明PP专用树脂的良好基料。添加透明剂A的无规共聚透明PP,ω(C2H4)至少在3%以上,专用树脂的透明度和其他性能良好。  相似文献   

6.
The synergistic toughening effect of nucleating agent (NA) and ethylene–octene copolymer (POE) on polypropylene was studied in the present work. Two different nucleating agents, such as α-form nucleating agent 1,3 : 2,4-bis (3,4-dimethylbenzylidene) sorbitol (DMDBS, Millad 3988) and β-form nucleating agent aryl amides compounds (TMB-5), were selected to blend with PP or PP/POE blends, respectively. The results show that PP containing 0.5–0.25 wt % DMDBS or 0.5–0.25 wt % TMB-5 has relatively low impact strength. For PP/POE blends, although the impact strength increases gradually with the increasing of POE content, high content of POE is needed to obtain the available PP toughness. However, once nucleating agent and POE are simultaneously added into PP, PP/POE/NA blends show great improvement of toughness even at low POE content. Furthermore, the synergistic toughening effect of POE/TMB-5 is more apparent than that of POE/DMDBS. SEM results show that whether DMDBS or TMB-5 has no apparent effect on the morphologies of POE in the PP/POE/NA blends. Further investigations using DSC and POM indicate that both DMDBS and TMB-5 induce the apparent enhancement of the crystallization temperature of PP and the sharp decrease of spherulites size of PP in the PP/POE/NA blends. The possible synergistic toughening mechanism is discussed in the work. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Woo Jin Choi 《Polymer》2004,45(7):2393-2401
The effects of talc orientation and non-isothermal crystallization rate on the crystal orientation of polypropylene in the injection-molded PP/EPR/Talc blends were studied by using AFM, DSC, SEM and XRD. Polypropylene was transcrystallized on the talc surface and the polypropylene crystal was oriented perpendicular to the talc surface. Therefore, the crystal orientation was affected by the talc orientation. At the surface of injection-molded specimens, the crystal orientation increased with decreasing the molecular weight of EPRs and increasing the talc content. Because talc particles were nearly oriented parallel to the flow direction in the skin layer of the specimens, the crystal orientation was amplified by the increased crystallization rate. The non-isothermal crystallization behavior of PP/EPR/Talc blends was investigated in terms of the molecular weight of EPRs and the talc content. Non-isothermal crystallization rate increased with decreasing the molecular weight of EPRs due to the plasticizing effect of EPRs and increasing the content of talc which acts as nucleating agent.  相似文献   

8.
Blends of polypropylene (PP) and thermoplastic elastomers (TPE), namely SBS (styrene‐butadiene‐styrene) and SEBS (styrene‐ethylene/1‐butene‐styrene) block copolymers, were prepared to evaluate the effectiveness of the TPE type as an impact modifier for PP and influence of the concentration of elastomer on the polymer properties. Polypropylene homopolymer (PP‐H) and ethylene–propylene random copolymer (PP‐R) were evaluated as the PP matrix. Results showed that TPEs had a nucleating effect that caused the PP crystallization temperature to increase, with SBS being more effective than SEBS. Microstructure characterization tests showed that in most cases PP/SEBS blends showed the smallest rubber droplets regardless of the matrix used. It was seen that SEBS is a more effective toughening agent for PP than SBS. At 0°C the Izod impact strength of the PP‐H/SEBS 30% b/w blend was twofold higher than the SBS strength, with the PP‐R/SEBS 30% b/w blend showing no break. A similar behavior on tensile properties and flexural modulus were observed in both PP/TPE blends. Yield stress and tensile strength decreased and elongation at break increased by expanding the dispersed elastomeric phase in the PP matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 254–263, 2005  相似文献   

9.
The effectiveness of P(E‐co‐MA‐co‐GMA) as a compatibilizer for recycled PET/PP and recycled PET/PP‐EP (polypropylene (ethylene‐propylene) heterophase copolymer) blends was investigated by means of morphological (scanning electron microscopy), rheological (small amplitude oscillatory shear), mechanical (tensile, flexural and impact tests), and thermal (differential scanning calorimetry) properties. Compatibilizer concentration ranged from 1 to 5 wt % with respect to the whole blend. All blends were obtained in a 90/10 composition using a twin screw extruder. Compatibilization effects for PETr/PP‐EP were more pronounced due to ethylene segments present in both PP‐EP and P(E‐co‐EA‐co‐GMA). PETr/PP‐EP has shown greater dispersed phase size reduction, a more solid‐like complex viscosity behavior and larger storage modulus at low frequencies in relation to PETr/PP blend. For both investigated blends, mechanical properties indicated an improvement in both elongation at break and impact strength with increasing compatibilizer content. PETr/PP‐EP blends showed improved performance for the same level of compatibilizer content. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41892.  相似文献   

10.
增韧增强阻燃聚丙烯的研制   总被引:3,自引:0,他引:3  
采用溴/锑复合阻燃剂、三元乙丙橡胶(EPDM)和无碱玻璃纤维对聚丙烯(PP)进行了复合改性研究,考察了复合阻燃剂、EPDM和无碱玻璃纤维含量对PP性能的影响。研究结果表明,溴/锑复合阻燃剂对PP有良好的阻燃作用;EPDM对PP有很好的增韧作用,并且可以提高阻燃剂的阻燃效率;无碱玻璃纤维的加入在有效提高复合材料拉伸强度、弯曲强度及弯曲模量的同时,还可以提高其冲击强度。  相似文献   

11.
在聚丙烯(PP)中加入两种新型成核剂:二苄叉山梨醇衍生物YS-688(α成核剂)和芳酰胺类化合物TMB-5(β成核剂),通过密炼–挤出的方法制备了PP/成核剂共混物材料。通过偏光显微镜、X射线衍射、差示扫描量热和力学性能测试研究了这两种成核剂对共混物结晶和力学性能的影响。结果表明,两种成核剂在适量时均能提高PP的结晶速率和结晶度,细化晶粒,且使晶体界面模糊,其中TMB-5具有较强的诱导PPβ晶成核的能力,当其质量分数为0.075%时,可使PP形成树枝状的β晶,而YS-688未改变PP的晶型,只生成了α晶。YS-688可提高共混物的拉伸强度,而TMB-5对共混物的拉伸强度影响很小;当两种成核剂质量分数均为0.075%时,共混物的韧性最好,相对于纯PP,PP/YS-688共混物的常温和–30℃缺口冲击强度分别提高了37.41%和12.76%,拉伸强度提高了11.11%;PP/TMB-5共混物的常温和–30℃缺口冲击强度分别提高了100%和55.41%。  相似文献   

12.
Attempts were made to prepare dynamically crosslinked ethylene–propylene–diene monomer/polypropylene (EPDM/PP, 60/40 w/w) blends loaded with various amounts of silica as a particulate reinforcing agent. The dispersion of silica between the two phases under mixing conditions, and also extent of interaction, as the two main factors that influence the blend morphology were studied by scanning electron microscopy. Increasing the silica concentration led to the formation of large‐size EPDM aggregates shelled by a layer of PP. Dynamic mechanical thermal analysis performed on the dynamically cured silica‐loaded blend samples showed reduction in damping behavior with increasing silica content. Higher rubbery‐like characteristics under tensile load were exhibited by the silica‐filled EPDM/PP‐cured blends. However, increasing the silica level to 50 phr led to the enhancement of interface, evidenced by increases in the tensile modulus and extensibility of the blend compared with those of the unloaded sample. Addition of a silane coupling agent (Si69) into the mix improved the mechanical properties of the blend, attributed to the strengthening of interfacial adhesion between the PP matrix and silica‐filled EPDM phase. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2000–2007, 2004  相似文献   

13.
研究了酰胺类β晶型成核剂对无规共聚聚丙烯(PP R)非等温结晶动力学的影响。结果表明,β成核剂提高了PP R的结晶峰温。在相同的冷却速率下,β成核剂改性PP R体系的Zc比纯PP R小,半结晶时间t1/2比纯PP R长;达到相同结晶度时,β成核剂改性PP R体系所需的冷却速率大于纯PP R,这说明β成核剂的加入降低了PP R的结晶速率。莫法可以很好地表征PP R及β成核剂改性PP R体系的非等温结晶行为。  相似文献   

14.
Compatibilization is necessary for most binary blends which display poor mechanical properties. The addition of an ethylene–propylene block copolymer to a blend of isotactic polypropylene and linear low-density polyethylene alleviates the problem of poor adhesion at the interface. This was observed through the improvement in overall performance of the blend. It was noted that it is not solely the “interfacial agent” which is responsible for the improvement in impact strength of this blend. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
A dynamically photocrosslinked polypropylene (PP)/ethylene–propylene–diene (EPDM) rubber thermoplastic elastomer was prepared by simultaneously exposing the elastomer to UV light while melt‐mixing in the presence of a photoinitiator as well as a crosslinking agent. The effects of dynamic photocrosslinking and blend composition on the mechanical properties, morphological structure, and thermal behavior of PP/EPDM blends were investigated. The results showed that after photocrosslinking, tensile strength, modulus of elasticity, and elongation at break were improved greatly. Moreover, the notched Izod impact strength was obviously enhanced compared with corresponding uncrosslinked blend. Scanning electron microscopy (SEM) morphological analysis showed that for uncrosslinked PP/EPDM blends, the cavitation of EPDM particles was the main toughening mechanism; whereas for dynamically photocrosslinked blends, shear yielding of matrix became the main energy absorption mechanism. The DSC curves showed that for each dynamically photocrosslinked PP/EPDM blend, there was a new smaller melting peak at about 152°C together with a main melting peak at about 166°C. Dynamic mechanical thermal analysis (DMTA) indicated that the compatibility between EPDM and PP was improved by dynamic photocrosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3371–3380, 2004  相似文献   

16.
The rheological, thermal, and mechanical properties of propylene–ethylene block copolymer (PPB) blends with predominantly atactic molecular structure of low molecular weight polypropylene and propylene copolymers with either ethylene or 1‐butene (APAO) have been studied. It has been found that blend properties depend on comonomer type, content, and molecular weight of APAO as well as blend composition. APAO having ethylene comonomer showed better miscibility with PPB than the other ones, and high comonomer content of APAOs gave dramatic increase in impact strength over 30 wt%. It has been concluded that APAO can be used as an effective modifier of PPB. POLYM. ENG. SCI., 47:1905–1911, 2007. © 2007 Society of Plastics Engineers  相似文献   

17.
The thermal behavior and the miscibility of an in‐situ polypropylene blend named polypropylene catalloys (PP‐cats) were investigated by using modulated differential scanning calorimeter (MDSC). It is found that all PP‐cats samples present two glass transitions, one of which is ascribed to the ethylene‐propylene random copolymer (EPR), and the other, to isotactic polypropylene (PP). However, no glass transition of ethylene‐propylene block copolymer (E‐b‐P) responsible for a third component in PP‐cats could be found. With the increase of EPR, the glass transition temperatures responding to PP and EPR components, Tg, PP and Tg, EPR, shift to low temperature, because of the enhancement of the interaction between PP and EPR component and the increase of ethylene content in EPR, respectively. Furthermore, the difference between Tg, PP and Tg, EPR remarkably decreases with the increase of the total ethylene content in PP‐cats, which indicates that the miscibility of PP‐cats is strongly dependent on the composition. Comparing the Tg, PP and Tg, EPR with Tg of fractionated PP and EPR, we ascribe the Tg change of PP fraction to the increase of EPR content; while that of EPR, to the increase of ethylene content in EPR. These experimental results suggest that the existence of E‐b‐P plays an important role in improving the miscibility between propylene homopolymer and EPR in PP‐cats. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

18.
The adhesion properties of epoxidized natural rubber (ENR 25)/(ethylene‐propylene‐diene rubber) blend adhesive were investigated by using various blend ratios of the two rubbers and rate of testing. Coumarone‐indene resin was used as the tackifier. Results show that the loop tack and peel strength of adhesives increase steadily up to 60% ENR 25 before decreasing with further increase in % ENR 25. This observation is attributed to an increase in wettability and compatibility up to the optimum value of the ENR 25 blend ratio. However, shear strength increases continuously with increasing percentage of ENR 25, an observation that is ascribed to the increasing cohesive strength of the blend adhesive. In all cases, the adhesion properties increase with increasing coating thickness and testing rates. J. VINYL ADDIT. TECHNOL., 22:134–139, 2016. © 2014 Society of Plastics Engineers  相似文献   

19.
Abstract

Thermoplastic elastomer, which has important characteristics for cable insulation, was developed by melt blending of polypropylene (PP) with ethylene propylene diene monomer (EPDM) at various blend ratios together with SiO2, TiO2 and ZnO nanofillers at fixed loading of 2 vol.-%. The influence of EPDM content and the presence of nanofillers in the blend on burning rate, hydrophobicity and dielectric breakdown strength were investigated. Burning rate of PP/EPDM/ZnO was significantly reduced, implying that there was an improvement in fire retardancy with the addition of ZnO nanofillers in the polymer blend. Both SiO2 and ZnO filled system showed an improvement in hydrophobicity. Furthermore, dielectric breakdown strength showed higher value in EPDM rich blends. In addition, the presence of nanofillers deteriorated the dielectric breakdown strength of PP/EPDM nanocomposites.  相似文献   

20.
The structure development, rheological behavior, viscoelastic, and mechanical properties of dynamically cured blend based on the ethylene–propylene–diene terpolymer (EPDM) and polypropylene (PP) with a ratio of 60/40 by weight were studied. The variation of two‐phase morphology was observed and compared as the level of curing agent was increased. Meanwhile, as the level of curing agent increased, viscosity as a function of shear stress always increased at a shear stress range of 2.2 × 104 to 3.4 × 105 Pa at the temperature of 200°C, yet viscosity of the blend approached each other at high shear stress. Dynamic mechanical spectra at different temperatures show that dynamic modulus (E′) of the blend exhibits two drastic transitions corresponding to glass transition temperature (Tg) of EPDM and Tg of PP, respectively. In the blends Tgs of EPDM increase and Tgs of PP almost remain unchangeable with an increase in curing agent level. Tensile strength increased, yet elongation at break decreased as the level of curing agent is increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 357–362, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号