首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以二氧化锰(MnO2)为氧化剂,通过乳液聚合法室温条件下制备了十二烷基苯磺酸钠(SDBS)、十二烷基磺酸钠(SDS)、曲拉通(T-X100)掺杂的聚苯胺(PANI-SDBS、PANI-SDS、PANI-T-X100)。并采用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)以及X射线衍射(XRD)对其结构和形貌进行了表征。以掺杂PANI为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)、电化学阻抗(EIS)和恒电流充放电技术分别测试了掺杂PANI电化学性能。结果表明,以PANI-SDBS、PANI-T-X100为电极材料的超级电容器在5mA/cm2放电电流下的比电容为393、339F/g,均高于未掺杂PANI的比电容(228F/g),1000次循环后的比电容仍高于未掺杂PANI。其中PANI-SDBS纤维纳米材料具有较高的比容量和良好的循环性能。  相似文献   

2.
聚苯胺的电化学制备及电容特性   总被引:1,自引:0,他引:1  
在硫酸介质中以苯胺为单体,采用循环伏安法(CV)合成了聚苯胺(PANI)。利用红外光谱(FTIR)、X射线衍射(XRD)、场发射扫描电镜(SEM)等手段对其结构和形貌进行了表征。在2 mol/L KOH电解液中,对合成的聚苯胺粉末构成的电极进行了循环伏安、恒流充放电(CP)及交流阻抗(EIS)等电化学性能测试。结果表明,电化学合成硫酸掺杂的PANI有良好的结晶性并呈现出纳米棒的结构,电流密度为20mA/cm2时,PANI电容器的比电容高达421.11 F/g,是一种具有优良应用前景的超级电容器材料。  相似文献   

3.
以界面聚合法制备了聚苯胺和Mn2+掺杂聚苯胺复合材料。利用红外光谱(FT-IR)、X射线衍射(XRD)、场发射扫描电镜(SEM)对其结构和形貌进行了表征。在0.5mol/L H2SO4中,通过循环伏安法(CV)、恒流充放电(CP)、交流阻抗谱法(EIS)对电极材料的电化学性能进行了测试。结果表明,当以5mA/cm2的电流密度放电时,Mn2+化学掺杂聚苯胺的电极比电容达403F/g,远高于单纯的聚苯胺,是一种具有优良应用前景的超级电容器材料。  相似文献   

4.
采用循环伏安法(CV)制备了聚苯胺(PANI)和掺杂镧离子的聚苯胺(PANI/La~(3+))薄膜电极。利用傅里叶红外光谱、X射线衍射、场发射扫描电镜和X射线能谱仪对其结构和形貌进行了分析。通过循环伏安、恒流充放电(CP)及交流阻抗(EIS)等测试其电化学性能。结果表明,在0.5mol/L H_2SO_4电解液中,当电流密度为5mA/cm~2时,掺杂镧离子的聚苯胺比电容相对聚苯胺薄膜电极提高了100F/g,且镧离子掺杂后的聚苯胺循环稳定性明显改善。  相似文献   

5.
在酸性介质中,采用电化学循环伏安法合成了Ag+掺杂改性聚苯胺复合电极材料,利用红外光谱、X射线衍射和扫描电镜等检测手段对电极材料的结构和形貌进行了表征,研究了Ag+不同掺杂浓度对聚苯胺电容性能的影响,同时探讨了系列过渡金属离子与聚苯胺之间的作用机理及对容量的影响规律。结果表明,电流密度为3 m A/cm2时,浓度为0.12mol/L的Ag+改性聚苯胺电极材料的比电容达1000 F/g,循环1000次后,比电容的保持率为71%,相对于无Ag+掺杂的PANI(比电容和比电容的保持率分别为591 F/g和46%),其电化学性能有较大程度的改善。利用电子亲和势和离子半径的比值(Ea/r)可以说明不同过渡金属离子对聚苯胺比电容的改善程度。  相似文献   

6.
在酸性介质中,采用电化学循环伏安法合成了Ag+掺杂改性聚苯胺复合电极材料,利用红外光谱、X射线衍射和扫描电镜等检测手段对电极材料的结构和形貌进行了表征,研究了Ag+不同掺杂浓度对聚苯胺电容性能的影响,同时探讨了系列过渡金属离子与聚苯胺之间的作用机理及对容量的影响规律。结果表明,电流密度为3 m A/cm2时,浓度为0.12mol/L的Ag+改性聚苯胺电极材料的比电容达1000 F/g,循环1000次后,比电容的保持率为71%,相对于无Ag+掺杂的PANI(比电容和比电容的保持率分别为591 F/g和46%),其电化学性能有较大程度的改善。利用电子亲和势和离子半径的比值(Ea/r)可以说明不同过渡金属离子对聚苯胺比电容的改善程度。  相似文献   

7.
在酸性介质中,采用电化学循环伏安法合成了Ag+掺杂改性聚苯胺复合电极材料,利用红外光谱、X射线衍射和扫描电镜等检测手段对电极材料的结构和形貌进行了表征,研究了Ag+不同掺杂浓度对聚苯胺电容性能的影响,同时探讨了系列过渡金属离子与聚苯胺之间的作用机理及对容量的影响规律。结果表明,电流密度为3 m A/cm2时,浓度为0.12mol/L的Ag+改性聚苯胺电极材料的比电容达1000 F/g,循环1000次后,比电容的保持率为71%,相对于无Ag+掺杂的PANI(比电容和比电容的保持率分别为591 F/g和46%),其电化学性能有较大程度的改善。利用电子亲和势和离子半径的比值(Ea/r)可以说明不同过渡金属离子对聚苯胺比电容的改善程度。  相似文献   

8.
采用超声氧化聚合法,以自制杂多酸H6PMo9V3O40作为质子酸掺杂剂兼辅助氧化剂,配合过硫酸铵(APS)氧化剂,合成了聚苯胺基复合电容材料H6PMo9V3O40/PANI。以此复合材料为活性物质制备电极,在0.5mol/L H2SO4电解液体系中,通过循环伏安、恒电流充放电和交流阻抗等技术研究其电化学性能。结果表明,H6PMo9V3O40/PANI电极体现出优良的法拉第赝电容特征,循环稳定性能良好,且大电流下充放电特征明显。在-0.1~0.7V(vs.SCE)电压和1.5A/g电流密度下,首次充电比电容量160.643F/g,放电比电容量153.225F/g,充放电效率95.38%,500次循环后,充电比电容量140.543F/g,衰减率12.51%,放电比电容量139.528F/g,衰减率8.94%,充放电效率99.27%。  相似文献   

9.
以苯胺为原料采用原位合成法制备了聚苯胺/二硫化钒(PANI/VS_2)纳米复合材料。运用X射线衍射(XRD)分析技术和电子扫描显微镜(SEM)研究PANI/VS_2纳米复合材料的结构特征,采用循环伏安法、恒电流充电/放电和交流阻抗技术手段对其电化学性能进行测试。得到的复合材料最大比电容可达到2077F/g(电流密度为1A/g),远大于PANI和VS_2单组分的比电容,在电流密度为5A/g时循环500次,比电容保持率为96%。  相似文献   

10.
以管状二氧化锰(MnO2)为氧化剂和模板剂在酸水体系中化学氧化制备了聚苯胺(PANI)纳米管。采用能谱仪、扫描电镜、透射电镜、红外光谱、循环伏安、恒流充放电及交流阻抗谱等测试手段对其结构和电化学性能进行测试;研究不同苯胺单体(ANI)的用量对PANI结构和电化学性能的影响。结果表明,制备的聚苯胺为内径约90nm,外径约350nm,长约2μm的纳米管;在 m(MnO2)∶m(ANI)=9∶25时,合成的PANI管状结构比较丰富,在1mol/L H2SO4电解液中比电容达到473F/g。  相似文献   

11.
赵磊  冉奋  张宣宣  朱永鑫  孔令斌  康龙 《功能材料》2013,(19):2773-2777
以管状二氧化锰(MnO2)为氧化剂和模板剂在酸水体系中化学氧化制备了聚苯胺(PANI)纳米管。采用能谱仪、扫描电镜、透射电镜、红外光谱、循环伏安、恒流充放电及交流阻抗谱等测试手段对其结构和电化学性能进行测试;研究不同苯胺单体(ANI)的用量对PANI结构和电化学性能的影响。结果表明,制备的聚苯胺为内径约90nm,外径约350nm,长约2μm的纳米管;在m(MnO2)∶m(ANI)=9∶25时,合成的PANI管状结构比较丰富,在1mol/L H2SO4电解液中比电容达到473F/g。  相似文献   

12.
采用化学氧化法制得氧化石墨烯(GO),再用NaBH4还原得到石墨烯(GN);以二氧化锰为氧化剂,室温下通过化学氧化聚合法制备了聚苯胺/石墨烯复合材料(PANI/GN)。采用扫描电子显微镜(SEM)及X-射线衍射(XRD)对其结构和形貌进行了表征。以PANI/GN为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)和恒电流充放电技术分别测试了PANI/GN电化学性能,在0.1A/g的电流密度下的比容量为468.5F/g,经过1000次连续充放电,电容保持率为84.9%。与PANI、GN单一材料相比,PANI/GN复合物具有较高的比电容和很好的循环稳定性。  相似文献   

13.
利用乙酸为溶剂和掺杂剂,通过化学氧化聚合法制备了掺杂聚苯胺,利用红外光谱(FT-IR)、电子扫描显微镜(SEM)和X射线衍射(XRD)对聚合物进行了表征。在1 mol/L H2SO4溶液中,用循环伏安、恒流充放电、电化学交流阻抗等测试方法,对不同温度制备的聚苯胺的电化学电容特性进行了研究。结果表明,低温(0℃)制备的乙酸掺杂聚苯胺在1 mol/L硫酸溶液中呈现较好的电容性质,5 mA放电时电容值达407 F/g,比室温制备的聚苯胺比电容(212 F/g)高48%。  相似文献   

14.
以二氧化锰(MnO2)为氧化剂,通过乳液聚合法室温条件下制备了十二烷基苯磺酸钠(SDBS)、十二烷基磺酸钠(SDS)、曲拉通(T-X100)掺杂的聚苯胺(PANI-SDBS、PANI-SDS、PANI-T-X100)。并采用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)以及X射线衍射(XRD)对其结构和形貌进行了表征。以掺杂PANI为活性物质制备电极,1.0mol/LH2SO4水溶液 为 电 解 液 组 装 超 级 电 容 器,用 循 环 伏 安 法(CV)、电化学阻抗(EIS)和恒电流充放电技术分别测试了掺杂PANI电化 学性能。结果表明,以PANI-SDBS、PANI-T-X100为 电 极 材 料 的 超 级 电 容 器 在5mA/cm2放电电流下的比电容为393、339F/g,均高于未掺杂PANI的比电容(228F/g),1000次循环后的比电容仍高于未掺杂PANI。其中PANI-SDBS纤维纳米材料具有较高的比容量和良好的循环性能。  相似文献   

15.
在聚苯胺(PANI)和聚吡咯(PPy)的相应单体溶液中,采用循环伏安法(CV)在不锈钢基体(SS)上分层聚合制备了具有聚苯胺/聚吡咯复合薄膜(PANI/PPy/SS)的电极材料。用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)对其结构进行了表征。在0.5mol/L H2SO4中,对PANI/PPy/SS电极材料进行了循环伏安法、恒流充放电、交流阻抗谱(EIS)等电化学性能测试,并用塔菲尔曲线(Tafel)研究了其耐腐蚀性能。结果表明,当电流密度为5mA/cm2时,PANI/PPy/SS电极材料比电容达747.5F/g,且复合膜的腐蚀电位相对于单纯的PANI、PPy薄膜分别正移了0.064V、0.117V,表现出较好的耐腐蚀性,是一种应用前景很好的超级电容器材料。  相似文献   

16.
采用恒电流法、脉冲电流法、循环伏安法及自聚合法4种聚合方法将聚苯胺(PANI)沉积在改性石墨(MGE)上,制备了PANI/MGE复合电极。利用扫描电镜和红外光谱对PANI/MGE的微观形貌和分子结构进行表征;利用循环伏安法、恒电流充放电及电化学阻抗谱测试研究PANI/MGE的电化学性能。结果表明:脉冲电流法聚合所得PANI/MGE具有最高的单位面积电容量和良好的倍率特性,放电电流为10mA/cm2时,比电容可达3.35F/cm~2;在-0.2~0.8V区间内具有良好的电容性能,且经1000次扫描后,循环电容保持率为82.64%,可以用作赝电容器的电极材料。  相似文献   

17.
用液相沉淀法制备了二氧化锰/酸化多壁碳纳米管(MnO2/SMWCNT)和二氧化锰/酸化多壁碳纳米管/聚苯胺(MnO2/SMWCNT/PANI)电极材料。通过循环伏安、恒电流充放电等方法测试了样品的电化学性能。结果表明, 当MnO2:SMWCNT:PANI的质量比为1:1:0.4时,它的电化学性能最好, 在0.1 A/g电流密度下的比电容为318.6 F/g, 氧化电流为6.02 A/g, 循环100次后电流保持率保持在92.7%。  相似文献   

18.
在含有苯胺(PANI)、硝酸(HNO3)和硝酸钴[Co(NO3)2·6H2O]的溶液中,采用循环伏安法(CV)在不锈钢基底表面制备PANI/Co2+复合薄膜。利用傅里叶红外光谱(FT-IR)、X射线衍射(XRD)等手段对其结构和形貌进行表征。在0.5mol/L H2SO4中,通过循环伏安测试(CV)、交流阻抗(EIS)、塔菲尔(Tafel)曲线对PANI/Co2+复合薄膜的耐腐蚀性能进行了研究。结果表明,不锈钢表面覆盖掺杂态聚苯胺膜后,其腐蚀电位比纯聚苯胺膜时提高,可以显著降低腐蚀电流密度,并且Co2+浓度会影响掺杂态膜的耐腐蚀性。  相似文献   

19.
考察了多扫循环伏安法制备出的聚十二烷基苯磺酸/聚苯胺(PDBSA/PANI)复合材料的电化学性能。结果表明,与自吸附十二烷基苯磺酸/聚苯胺(DBSA/PANI)、纯PANI相比,PDBSA/PANI复合材料的荷电量最大,电化学阻抗最小,说明PDBSA更能显著地增强PANI的导电性;PDBSA/PANI复合材料的比电容为407.692F/g,比DBSA/PANI复合材料(339.307F/g)和纯PANI(235.088F/g)均高,表明PDBSA可以较大程度地改善PANI的电荷贮存性;pH和扫速试验显示PDBSA没有改变PANI的单电子单质子的氧化还原反应,说明PDBSA没有参与到聚苯胺的氧化还原反应中。  相似文献   

20.
以樟脑磺酸为掺杂酸,过硫酸铵为引发剂,丁二酸二异辛酯磺酸钠为表面活性剂,通过简单的化学氧化法成功地制备出具有交联网状结构的聚苯胺(PANI),并通过原位聚合法获得了聚苯胺/多壁碳纳米管(PANI/MWCNT)复合物。形貌分析结果表明,交联结构的PANI成功地包覆在MWCNT表面。电容性能测试结果显示,当电流密度为0.5 A/g时,PANI/MWCNT复合物的比电容高达639.7 F/g,较纯PANI的比电容(498.7 F/g)有显著提高。在5.0 A/g的电流密度下,经1000次充放电循环后,PANI/MWCNT复合物的电容仍保持为初始值的77.2%,而纯PANI的电容保持率仅为65.1%,表明MWCNT的引入能够较好地改善PANI的电化学稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号