首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional portfolio optimization models have an assumption that the future condition of stock market can be accurately predicted by historical data. However, no matter how accurate the past data is, this premise will not exist in the financial market due to the high volatility of market environment. This paper discusses the fuzzy portfolio optimization problem where the asset returns are represented by fuzzy data. A mean-absolute deviation risk function model and Zadeh’s extension principle are utilized for the solution method of portfolio optimization problem with fuzzy returns. Since the parameters are fuzzy numbers, the gain of return is a fuzzy number as well. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the return of the portfolio optimization problem. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a pair of ordinary one-level linear programs so they can be manipulated. It is found that the calculated results conform to an essential idea in finance and economics that the greater the amount of risk that an investor is willing to take on, the greater the potential return. An example, which utilizes the data from Taiwan stock exchange corporation, illustrates the whole idea on fuzzy portfolio optimization problem.  相似文献   

2.
In this study, the adaptive neural fuzzy inference system (ANFIS), a hybrid fuzzy neural network, is adopted to predict the actions of the investors (when and whether they buy or sell) in a stock market in anticipation of an event–changes in interest rate, announcement of its earnings by a major corporation in the industry, or the outcome of a political election for example. Generally, the model is relatively more successful in predicting when the investors take actions than what actions they take and the extent of their activities. The findings do demonstrate the learning and predicting potential of the ANFIS model in financial applications, but at the same time, suggest that some of the market behaviors are too complex to be predictable.  相似文献   

3.
In the present study, we present evidence on the efficiency of a recursive linear portfolio management system. Extensive tests have been performed using data from two Scandinavian stock markets. The optimal ex-ante investment strategies generated by the system yield a yearly return on investment of 75 to 80% when using a forecasting horizon of three to five days. The computational efficiency of the system can be improved considerably by using a faster optimization algorithm.  相似文献   

4.
In the areas of investment research and applications, feasible quantitative models include methodologies stemming from soft computing for prediction of financial time series, multi-objective optimization of investment return and risk reduction, as well as selection of investment instruments for portfolio management based on asset ranking using a variety of input variables and historical data, etc. Among all these, stock selection has long been identified as a challenging and important task. This line of research is highly contingent upon reliable stock ranking for successful portfolio construction. Recent advances in machine learning and data mining are leading to significant opportunities to solve these problems more effectively. In this study, we aim at developing a methodology for effective stock selection using support vector regression (SVR) as well as genetic algorithms (GAs). We first employ the SVR method to generate surrogates for actual stock returns that in turn serve to provide reliable rankings of stocks. Top-ranked stocks can thus be selected to form a portfolio. On top of this model, the GA is employed for the optimization of model parameters, and feature selection to acquire optimal subsets of input variables to the SVR model. We will show that the investment returns provided by our proposed methodology significantly outperform the benchmark. Based upon these promising results, we expect this hybrid GA-SVR methodology to advance the research in soft computing for finance and provide an effective solution to stock selection in practice.  相似文献   

5.

In this study, a new hybrid forecasting method is proposed. The proposed method is called autoregressive adaptive network fuzzy inference system (AR–ANFIS). AR–ANFIS can be shown in a network structure. The architecture of the network has two parts. The first part is an ANFIS structure and the second part is a linear AR model structure. In the literature, AR models and ANFIS are widely used in time series forecasting. Linear AR models are used according to model-based strategy. A nonlinear model is employed by using ANFIS. Moreover, ANFIS is a kind of data-based modeling system like artificial neural network. In this study, a linear and nonlinear forecasting model is proposed by creating a hybrid method of AR and ANFIS. The new method has advantages of data-based and model-based approaches. AR–ANFIS is trained by using particle swarm optimization, and fuzzification is done by using fuzzy C-Means method. AR–ANFIS method is examined on some real-life time series data, and it is compared with the other time series forecasting methods. As a consequence of applications, it is shown that the proposed method can produce accurate forecasts.

  相似文献   

6.
This paper addresses the problem of identifying optimal portfolio parameters in nonsparse and sparse models. Generally, using the sample estimates to construct a mean–variance portfolio often leads to undesirable portfolio performance. We propose a novel bi-level programming framework to identify the optimal values of expected return and cardinality, which can be estimated separately or simultaneously. In the general formulation of our approach, outer-level is designed to maximize the utility of the portfolio, which is measured by Sharpe ratio, while the inner-level is to minimize the risk of a portfolio under a given expected return. Considering the nonconvex and nonsmooth characteristics of the outer-level, we develop a hybrid derivative-free optimization algorithm embedded with alternating direction method of multipliers to solve the problem. Numerical experiments are carried out based on both simulated and real-life data. During the process, we give a prior range of cardinality using the data-driven method to promote the efficiency. Estimating the parameters by our approach achieves better performance both in the stock and fund-of-funds markets. Moreover, we also demonstrate that our results are robust when the risk is measured by conditional value-at-risk.  相似文献   

7.
Absolute deviation is a commonly used risk measure, which has attracted more attentions in portfolio optimization. The existing mean-absolute deviation models are devoted to either stochastic portfolio optimization or fuzzy one. However, practical investment decision problems often involve the mixture of randomness and fuzziness such as stochastic returns with fuzzy information. Thus it is necessary to model portfolio selection problem in such a hybrid uncertain environment. In this paper, we employ random fuzzy variable to describe the stochastic return on individual security with ambiguous information. We first define the absolute deviation of random fuzzy variable and then employ it as risk measure to formulate mean-absolute deviation portfolio optimization models. To find the optimal portfolio, we design random fuzzy simulation and simulation-based genetic algorithm to solve the proposed models. Finally, a numerical example for synthetic data is presented to illustrate the validity of the method.  相似文献   

8.
Combining the stock prediction with portfolio optimization can improve the performance of the portfolio construction. In this article, we propose a novel portfolio construction approach by utilizing a two-stage ensemble model to forecast stock prices and combining the forecasting results with the portfolio optimization. To be specific, there are two phases in the approach: stock prediction and portfolio optimization. The stock prediction has two stages. In the first stage, three neural networks, that is, multilayer perceptron (MLP), gated recurrent unit (GRU), and long short-term memory (LSTM) are used to integrate the forecasting results of four individual models, that is, LSTM, GRU, deep multilayer perceptron (DMLP), and random forest (RF). In the second stage, the time-varying weight ordinary least square model (OLS) is utilized to combine the first-stage forecasting results to obtain the ultimate forecasting results, and then the stocks having a better potential return on investment are chosen. In the portfolio optimization, a diversified mean-variance with forecasting model named DMVF is proposed, in which an average predictive error term is considered to obtain excess returns, and a 2-norm cost function is introduced to diversify the portfolio. Using the historical data from the Shanghai stock exchange as the study sample, the results of the experiments indicate the DMVF model with two-stage ensemble prediction outperforms benchmarks in terms of return and return-risk characteristics.  相似文献   

9.
投资者在实际金融市场中的决策行为往往会受到主观心理认知的影响.考虑参照依赖、敏感性递减和损失厌恶等影响投资决策的心理特征,研究模糊环境下的投资组合选择问题.首先,假设资产的收益为梯形模糊数,依据前景理论中的价值函数,将组合收益转化为体现投资者心理特征的感知价值;然后,以感知价值的可能性均值最大化和可能性下半方差最小化为目标,建立考虑心理特征的模糊投资组合优化模型;接着,为了有效地求解模型,设计一个多种群遗传算法;最后,通过实例分析表明模型和算法的有效性.结果表明,与传统的遗传算法相比,所设计的多种群遗传算法可更有效地求解模型,考虑心理特征的模糊投资组合优化模型能够提升投资者的满意程度,可为实际的投资活动提供决策支持.  相似文献   

10.
针对服务器底层部分业务类硬件故障对系统稳定运行的影响,提出一种改进的量子行为粒子群优化(IQPSO)与遗传算法(GA)相结合的混合元启发式优化算法对自适应神经模糊推理系统(ANFIS)参数进行训练,以获得更准确的ANFIS规则进行硬件故障预警的方法。首先,通过分析服务器业务与硬件相关参数之间的映射关系,通过采集的数据集对ANFIS模型进行训练构造预测模型;其次,考虑ANFIS在梯度计算过程中存在容易陷入局部最优值的问题,设计了一种IQPSO算法结合GA中的交叉和变异算子操作混合元启发算法全局搜索ANFIS规则参数;最后,通过一组后处理样本数据集对所提方法有效性和稳定性进行了检验。实验结果表明,该方法可有效预警服务器硬件故障,基于所提混合元启发优化算法获得的ANFIS模型具备更快的收敛速度和更高的全局搜索精度,与传统ANFIS模型相比泛化精度提高了47%以上。  相似文献   

11.
把信息技术项目当作组合来管理可以通过平衡风险和收益来促进企业目标和IT应用的结合,但由于决策信息的不确定性和IT项目目标与企业战略的难以对应,企业面临IT项目组合选择的挑战。构建基于战略对应的IT项目组合选择模型,其中模糊集和模糊层次分析法用来刻画不确定信息和评估IT项目风险、成本及收益,关键成功因素法用来提高IT项目与企业战略的对应,并建立模糊0-1整数规划。利用定性可能性理论把模糊组合选择模型转化为一般可求解的整数规划形式,最后用一个案例说明模型的用法。  相似文献   

12.
半方差约束下的模糊随机收益率贷款组合优化模型   总被引:2,自引:1,他引:1  
潘东静 《计算机科学》2010,37(5):291-294
银行贷款的收益率在很多情况下具有模糊随机性。将贷款收益率刻画为模糊随机变量,使用半方差作为风险度量方式,建立半方差约束下的模糊随机收益率贷款组合优化模型,目的是在一定的半方差约束和置信水平下,最大化贷款组合的收益率不小于预置收益率的本原机会测度。应用集成模糊随机模拟、神经网络、遗传算法的混合智能算法进行求解,最后通过实例验证了模型和算法的可行性和有效性。  相似文献   

13.
This paper researches portfolio selection problem in combined uncertain environment of randomness and fuzziness. Due to the complexity of the security market, expected values of the security returns may not be predicted accurately. In the paper, expected returns of securities are assumed to be given by fuzzy variables. Security returns are regarded as random fuzzy variables, i.e. random returns with fuzzy expected values. Following Markowitz's idea of quantifying investment return by the expected value of the portfolio and risk by the variance, a new type of mean–variance model is proposed. In addition, a hybrid intelligent algorithm is provided to solve the new model problem. A numeral example is also presented to illustrate the optimization idea and the effectiveness of the proposed algorithm.  相似文献   

14.
This paper presents the development of fuzzy portfolio selection model in investment. Fuzzy logic is utilized in the estimation of expected return and risk. Using fuzzy logic, managers can extract useful information and estimate expected return by using not only statistical data, but also economical and financial behaviors of the companies and their business strategies. In the formulated fuzzy portfolio model, fuzzy set theory provides the possibility of trade-off between risk and return. This is obtained by assigning a satisfaction degree between criteria and constraints. Using the formulated fuzzy portfolio model, a Genetic Algorithm (GA) is applied to find optimal values of risky securities. Numerical examples are given to demonstrate the effectiveness of proposed method.  相似文献   

15.
This paper deals with the problems of both project valuation and portfolio selection under the assumption that the investment capitals and the net cash flows of the projects are fuzzy variables. Using the credibilistic expected value and the credibilistic lower semivariance of fuzzy variables, this paper proposes both the credibilistic return index and the credibilistic risk index, which are measures of investment return and investment risk with annuity form for evaluating single project. Moreover, a composite risk-return index for selecting the optimal investment strategy is also presented. Then, we set up a general project portfolio optimization model with fuzzy returns and two specific models: triangle and interval fuzzy returns. Furthermore, we provide two algorithms: the improved heuristic rules based on genetic algorithm and the traversal algorithm. Finally, two numerical examples are presented to illustrate the efficiency and the effectiveness of these proposed optimization methods.  相似文献   

16.
The Markowitz’s mean-variance (M-V) model has received widespread acceptance as a practical tool for portfolio optimization, and his seminal work has been widely extended in the literature. The aim of this article is to extend the M-V method in hybrid decision systems. We suggest a new Chance-Variance (C-V) criterion to model the returns characterized by fuzzy random variables. For this purpose, we develop two types of C-V models for portfolio selection problems in hybrid uncertain decision systems. Type I C-V model is to minimize the variance of total expected return rate subject to chance constraint; while type II C-V model is to maximize the chance of achieving a prescribed return level subject to variance constraint. Hence the two types of C-V models reflect investors’ different attitudes toward risk. The issues about the computation of variance and chance distribution are considered. For general fuzzy random returns, we suggest an approximation method of computing variance and chance distribution so that C-V models can be turned into their approximating models. When the returns are characterized by trapezoidal fuzzy random variables, we employ the variance and chance distribution formulas to turn C-V models into their equivalent stochastic programming problems. Since the equivalent stochastic programming problems include a number of probability distribution functions in their objective and constraint functions, conventional solution methods cannot be used to solve them directly. In this paper, we design a heuristic algorithm to solve them. The developed algorithm combines Monte Carlo (MC) method and particle swarm optimization (PSO) algorithm, in which MC method is used to compute probability distribution functions, and PSO algorithm is used to solve stochastic programming problems. Finally, we present one portfolio selection problem to demonstrate the developed modeling ideas and the effectiveness of the designed algorithm. We also compare the proposed C-V method with M-V one for our portfolio selection problem via numerical experiments.  相似文献   

17.
As many data‐driven fields, finance is rich in problems requiring high computational power and intelligent systems techniques. In particular, the problem of selecting an optimal financial portfolio can be conveniently represented as a constrained optimization problem or a decision‐making problem. The aim of this paper is to show how to express the optimal portfolio selection problem from a decision‐theoretic perspective and show how to address this problem using fuzzy measures and fuzzy integrals. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
In portfolio selection problem, the expected return, risk, liquidity etc. cannot be predicted precisely. The investor generally makes his portfolio decision according to his experience and his economic wisdom. So, deterministic portfolio selection is not a good choice for the investor. In most of the recent works on this problem, fuzzy set theory is widely used to model the problem in uncertain environments. This paper utilizes the concept of interval numbers in fuzzy set theory to extend the classical mean–variance (MV) portfolio selection model into mean–variance–skewness (MVS) model with consideration of transaction cost. In addition, some other criteria like short and long term returns, liquidity, dividends, number of assets in the portfolio and the maximum and minimum allowable capital invested in stocks of any selected company are considered. Three different models have been proposed by defining the future financial market optimistically, pessimistically and in the combined form to model the fuzzy MVS portfolio selection problem. In order to solve the models, fuzzy simulation (FS) and elitist genetic algorithm (EGA) are integrated to produce a more powerful and effective hybrid intelligence algorithm (HIA). Finally, our approaches are tested on a set of stock data from Bombay Stock Exchange (BSE).  相似文献   

19.
李海林    梁叶 《智能系统学报》2019,14(2):288-295
利用时间序列聚类方法进行股指期货的套期保值,关键要选择合适的聚类方法。本文从新的视角来研究并提高时间序列聚类方法在金融数据分析领域的应用性能,提出一种基于标签传播时间序列聚类的股指期货套期保值模型。该模型以动态时间弯曲为相似性度量方法来构建现货股票网络空间结构,将每只股票看作一个节点,利用标签传播方法将节点划分到不同的簇中,最终实现股票数据聚类。另外,构建最小追踪误差优化模型来确定每支股票在现货组合中的最优权重,从而得到最优组合。实验分别比较新方法和传统聚类方法确定现货组合的追踪误差,结果表明新方法能够提高现货组合的追踪精度,为丰富金融市场投资和管理方式提供新的研究思路。  相似文献   

20.
Stock valuation is very important for fundamental investors in order to select undervalued stocks so as to earn excess profits. However, it may be difficult to use stock valuation results, because different models generate different estimates for the same stock. This suggests that the value of a stock should be multi-valued rather than single-valued. We therefore develop a multi-valued stock valuation model based on fuzzy genetic programming (GP). In our fuzzy GP model the value of a stock is represented as a fuzzy expression tree whose terminal nodes are allowed to be fuzzy numbers. There is scant literature available on the crossover operator for our fuzzy trees, except for the vanilla subtree crossover. This study generalizes the subtree crossover in order to design a new crossover operator for the fuzzy trees. Since the stock value is estimated by a fuzzy expression tree which calculates to a fuzzy number, the stock value becomes multi-valued. In addition, the resulting fuzzy stock value induces a natural trading strategy which can readily be executed and evaluated. These experimental results indicate that the fuzzy tree (FuzzyTree) crossover is more effective than a subtree (SubTree) crossover in terms of expression tree complexity and run time. Secondly, shorter training periods produce a better return of investment (ROI), indicating that long-term financial statements may distort the intrinsic value of a stock. Finally, the return of a multi-valued fuzzy trading strategy is better than that of single-valued and buy-and-hold strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号