首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti‐Ta based alloys are potential high‐temperature shape memory materials with operation temperatures above 100 °C. In this study, the room temperature fabrication of Ti‐Ta thin films showing a reversible martensitic transformation and a high temperature shape memory effect above 200 °C is reported. In contrast to other shape memory thin films, no further heat treatment is necessary to obtain the functional properties. A disordered α″ martensite (orthorhombic) phase is formed in the as‐deposited co‐sputtered Ti70Ta30, Ti68Ta32 and Ti67Ta33 films, independent of the substrate. A Ti70Ta30 free‐standing film shows a reversible martensitic transformation, as confirmed by temperature–dependent XRD measurements during thermal cycling between 125 °C to 275 °C. Furthermore, a one‐way shape memory effect is qualitatively confirmed in this film. The observed properties of the Ti‐Ta thin films make them promising for applications on polymer substrates and especially in microsystem technologies.  相似文献   

2.
利用阴极电弧离子镀技术在316L不锈钢基体上制备了CrN薄膜。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、纳米压痕仪对CrN薄膜的形貌、成分和力学性能进行了表征。为了研究Si_3N_4和52100钢对磨副材料对CrN薄膜和316L不锈钢干摩擦行为的影响,在2N、5N、8N三种载荷下,将CrN薄膜和316L不锈钢基体与Si_3N_4陶瓷球和52100钢球分别进行了往复式滑动干摩擦实验。采用扫描电子显微镜观察了磨痕的微观形貌,并对CrN薄膜和316L不锈钢基体的磨损机制进行了分析。结果表明:CrN薄膜表面平整,缺陷较少;CrN薄膜的纳米硬度约为28GPa,弹性模量约为350GPa;与Si_3N_4陶瓷球相比,CrN薄膜与52100钢球摩擦时摩擦因数相对较小(保持在0.7左右)且更加稳定;316L不锈钢的摩擦因数远大于CrN薄膜且波动较大;对磨球为Si_3N_4陶瓷球时,CrN薄膜的主要磨损机制为磨粒磨损,伴有少量的氧化和黏着磨损,316L不锈钢的磨损机制主要为磨粒磨损和塑性变形,伴有少量的氧化和黏着磨损;对磨球为52100钢球时,CrN薄膜的主要磨损机制为黏着磨损,伴有少量的氧化,316L不锈钢的磨损机制主要为黏着磨损,伴有少量的氧化和磨粒磨损。CrN薄膜与两种对磨球的磨损量均小于316L不锈钢基体的磨损量,说明CrN薄膜有效提高了基体的耐磨性。  相似文献   

3.
Titanium‐Tantalum coatings are deposited by magnetron co‐sputtering technique, using independently driven titanium and tantalum targets. The effect of the Ta content on the structure, mechanical, and wear properties of Ti films is investigated. It is found that the percentage of the added Ta varies linearly from 3.7 to 31.3 at% by increasing the power applied to the Ta target from 10 to 100 W. The XRD results show that the coatings are crystalline, and there is no evidence of the formation of intermetallic phases, instead formation of metastable phases of α″ and β depending on Ta content are observed, though the samples are deposited at low temperature (150 °C). It is shown that the elastic strain to failure (H/Er; hardness to reduced elastic moduli ratio) can be increased by 40% through the formation of crystalline phases with a lower E, while the hardness remains constant. The tribological study shows that increasing the Ta content up to 14.9 at% causes a significant improvement in adhesion of the coating to a soft metallic substrate.
  相似文献   

4.
The slip‐rolling resistances of hard and stiff thin films under high Hertzian contact pressures can be improved by optimizing the “coating/substrate systems”. It is known from former investigations that the so‐called “egg‐shell” effect is no general hindrance for high slip‐rolling resistance of thin hard coatings. The coating stability depends more on specific deposition process and coating/substrate interface design. In this article it is experimentally shown, that pure amorphous carbon thin films with hardness between 15 and 63 GPa can be slip‐rolling resistant several million load cycles under a maximum Hertzian contact pressures of up to 3.0 GPa. Whereas all coatings were stable up to 10 million load cycles in paraffin oil at room temperature, reduced coating lifetime was found in SAE 0W‐30 engine oil at 120°C. It was shown how the coating hardness and the initial coating surface roughness influence the running‐in process and coating lifetime. No clear correlation between coating hardness and coating lifetime could be observed, but friction coefficients seem to be reduced with higher coating hardness. Very low friction down to ?0.03 in unmodified engine oils was found for the hardest ta‐C film.  相似文献   

5.
采用真空热压烧结工艺制备了石墨烯(GNPs)和纳米Al2O3增韧的Ti(C,N)基金属陶瓷复合刀具材料(TAG)。研究了GNPs和纳米Al2O3对复合陶瓷材料微观结构、力学性能和摩擦磨损性能的影响。研究表明,GNPs和纳米Al2O3的添加对复合陶瓷材料的力学性能有明显的提高,当GNPs和纳米Al2O3含量(质量分数)为1%和5%时,复合刀具陶瓷材料(TA5G1)综合力学性能最优,其硬度、抗弯强度和断裂韧性分别为21.50 GPa、810.80 MPa和10.51 MPa·m1/2。研究了复合刀具材料的摩擦磨损性能和磨损机理,研究结果表明,在TAG复合刀具材料中,TA5G1的摩擦磨损性能最优,其摩擦系数和磨损率分别为0.338和4.921×10-6 mm3/(N·m),复合刀具材料的主要磨损形式为磨粒磨损和黏着磨损。  相似文献   

6.
Multi-element (AlCrTaTiZr)N films were deposited on cemented carbide and M2 steel substrates by reactive RF magnetron sputtering. Prior to nitride film deposition, an interlayer between the film and the substrate was introduced to improve adhesion property. The influence of interlayer materials (Ti, Cr, and AlCrTaTiZr alloy) and interlayer thickness (0–400 nm) on the adhesion and tribological properties of films was investigated. In this study, the nitride film deposited at RN = 20% exhibited the highest hardness (35.2 GPa) and the lowest residual compressive stress (? 1.52 GPa), and was prepared as the top layer for further testing. The interlayer materials can effectively improved the film adhesion onto the cemented carbide substrates, and the adhesive failure was not observed even under the normal load of 100 N. For M2 steel substrates, only the Cr interlayer can slightly improve the film adhesion, and the cohesive and adhesive failure can be found at relatively lower applied load. The optimal interlayer thickness was 100–200 nm for the 1 µm-thick (AlCrTaTiZr)N film and can be related to the stress evolution. The friction coefficient and wear rate for the (AlCrTaTiZr)N film were 0.82 and 4.9 × 10? 6 mm3/Nm, respectively, and almost kept constant under different interlayer materials and thickness. The worn-through event of the nitride film during tribological test occurred easily owing to its poor adhesion behavior, and can be improved by interlayer additions.  相似文献   

7.
Low‐temperature solution processing opens a new window for the fabrication of oxide semiconductors due to its simple, low cost, and large‐area uniformity. Herein, by using solution combustion synthesis (SCS), p‐type Cu‐doped NiO (Cu:NiO) thin films are fabricated at a temperature lower than 150 °C. The light doping of Cu substitutes the Ni site and disperses the valence band of the NiO matrix, leading to an enhanced p‐type conductivity. Their integration into thin‐film transistors (TFTs) demonstrates typical p‐type semiconducting behavior. The optimized Cu5%NiO TFT exhibits outstanding electrical performance with a hole mobility of 1.5 cm2 V?1 s?1, a large on/off current ratio of ≈104, and clear switching characteristics under dynamic measurements. The employment of a high‐k ZrO2 gate dielectric enables a low operating voltage (≤2 V) of the TFTs, which is critical for portable and battery‐driven devices. The construction of a light‐emitting‐diode driving circuit demonstrates the high current control capability of the resultant TFTs. The achievement of the low‐temperature‐processed Cu:NiO thin films via SCS not only provides a feasible approach for low‐cost flexible p‐type oxide electronics but also represents a significant step toward the development of complementary metal–oxide semiconductor circuits.  相似文献   

8.
Atmospheric pressure CVD of ZrO2 on fibers Two different Chemical vapor deposition processes on fiberbundles (number of fibers a few thousand, diameter of the single fiber ≈10 µm) with zirconium dioxide at atmospheric pressure have been developed (AiF project 12783N): 1) ZrO2 thin films on SiTiC fibers were grown by flame‐CVD using zirconium dipivaloylmethanate or acetylacetonate as precursors. The total deposition rate of 3·10–5 mol·m–2·s–1 was achieved in a 4 cm long deposition zone. 2) In a new atmospheric pressure CVD process the deposition took place via hydrolysis of zirconium dipyvaloylmethanate in water vapor. The total deposition rate of 7·10–6 mol·m–2·s–1 has been achieved in a 60 cm long pilot setup. This value allows to deposit continuously a 10 nm thick ZrO2 films on fibers moving with velocity of 30 m/h. The deposition rate demonstrated in this work is the highest achieved so far for ZrO2 CVD at atmospheric pressure.  相似文献   

9.
A macroscopic film (2.5 cm × 2.5 cm) made by layer‐by‐layer assembly of 100 single‐layer polycrystalline graphene films is reported. The graphene layers are transferred and stacked one by one using a wet process that leads to layer defects and interstitial contamination. Heat‐treatment of the sample up to 2800 °C results in the removal of interstitial contaminants and the healing of graphene layer defects. The resulting stacked graphene sample is a freestanding film with near‐perfect in‐plane crystallinity but a mixed stacking order through the thickness, which separates it from all existing carbon materials. Macroscale tensile tests yields maximum values of 62 GPa for the Young's modulus and 0.70 GPa for the fracture strength, significantly higher than has been reported for any other macroscale carbon films; microscale tensile tests yield maximum values of 290 GPa for the Young's modulus and 5.8 GPa for the fracture strength. The measured in‐plane thermal conductivity is exceptionally high, 2292 ± 159 W m?1 K?1 while in‐plane electrical conductivity is 2.2 × 105 S m?1. The high performance of these films is attributed to the combination of the high in‐plane crystalline order and unique stacking configuration through the thickness.  相似文献   

10.
It is an ongoing challenge to fabricate nonprecious oxygen reduction reaction (ORR) catalysts that can be comparable to or exceed the efficiency of platinum. A highly active non‐platinum self‐supporting Fe?N/C catalyst has been developed through the pyrolysis of a new type of precursor of iron coordination complex, in which 1,4‐bis(1H‐1,3,7,8–tetraazacyclopenta(1)phenanthren‐2‐yl)benzene (btcpb) functions as a ligand complexing Fe(II) ions. The optimal catalyst pyrolyzed at 700 °C (Fe?N/C?700) shows the best ORR activity with a half‐wave potential (E1/2) of 840 mV versus reversible hydrogen electrode (RHE) in 0.1 m KOH, which is more positive than that of commercial Pt/C (E1/2: 835 mV vs RHE). Additionally, the Fe?N/C?700 catalyst also exhibits high ORR activity in 0.1 m HClO4 with the onset potential and E1/2 comparable to those of the Pt/C catalyst. Notably, the Fe?N/C?700 catalyst displays superior durability (9.8 mV loss in 0.1 m KOH and 23.6 mV loss in 0.1 m HClO4 for E1/2 after 8000 cycles) and better tolerance to methanol than Pt/C. Furthermore, the Fe?N/C?700 catalyst can be used for fabricating the air electrode in Zn–air battery with a specific capacity of 727 mA hg?1 at 5 mA cm?2 and a negligible voltage loss after continuous operation for 110 h.  相似文献   

11.
Ultrathin transition metal dichalcogenides (TMDs) have exotic electronic properties. With success in easy synthesis of high quality TMD thin films, the potential applications will become more viable in electronics, optics, energy storage, and catalysis. Synthesis of TMD thin films has been mostly performed in vacuum or by thermolysis. So far, there is no solution phase synthesis to produce large‐area thin films directly on target substrates. Here, this paper reports a one‐step quick synthesis (within 45–90 s) of TMD thin films (MoS2, WS2, MoSe2, WSe2, etc.) on solid substrates by using microwave irradiation on a precursor‐containing electrolyte solution. The numbers of the quintuple layers of the TMD thin films are precisely controllable by varying the precursor's concentration in the electrolyte solution. A photodetector made of MoS2 thin film comprising of small size grains shows near‐IR absorption, supported by the first principle calculation, exhibits a high photoresponsivity (>300 mA W?1) and a fast response (124 µs). This study paves a robust way for the synthesis of various TMD thin films in solution phases.  相似文献   

12.
Nanostructures have attracted increasing interest in modern development of hard coatings for wear‐resistant applications. In plasma‐assisted vapor deposited thin films, nanostructures can evolve during growth or a post‐deposition annealing treatment. In this review we demonstrate, using TiB2.4, TiN–TiB2, Ti0.34Al0.66N, and Ti(N,B) as model‐coatings, the development of nanostructures and its influence on the mechanical properties of ceramic thin films. For TiB2.4 and TiN–TiB2 a two‐dimensional and three‐dimensional nanostructure, respectively, organizes itself during growth by segregation driven processes. Growth of Ti0.34Al0.66N and Ti(N,B) results in the formation of a supersaturated TiN based phase, which tends to decompose into its stable constituents during post‐deposition annealing via the formation of nm‐sized domains. As the hardness of a material is determined by resistance to bond distortion and dislocation formation and motion, which depend on the amount and constitution of obstacles provided, there is a direct relation between hardness and nanostructure.  相似文献   

13.
Nb2O5:MoO3 (95:5 and 85:15) thin films were deposited onto glass and fluorine doped tin oxide coated glass substrates at 100 and 300 °C by RF magnetron sputtering technique. The physical and electrochromic properties of the films were studied. XRD result reveals that deposited films were amorphous. The XPS study confirms the compositional purity and the presence of Nb5+ and Mo6+ in the deposited film. Surface morphological study shows platelet like features of deposited film. The average transmittance of the film is varied between 91 and 85 %. Photoluminescence study exhibits three characteristic emission peaks and confirms the better optical quality of deposited film. Raman spectra show the LO–TO splitting of Nb–O stretching of the deposited film. Electrochromic behavior of the deposited films characterized by cyclic voltammetry using 0.5 M LiClO4·PC and 0.5 M H2SO4 electrolyte solutions show all the films are having better reversibility and reproducibility in their electrochemical analysis.  相似文献   

14.
Noncovalent conformational locks are broadly employed to construct highly planar π‐conjugated semiconductors exhibiting substantial charge transport characteristics. However, current chalcogen‐based conformational lock strategies for organic semiconductors are limited to S···X (X = O, N, halide) weak interactions. An easily accessible (minimal synthetic steps) and structurally planar selenophene‐based building block, 1,2‐diethoxy‐1,2‐bisselenylvinylene ( DESVS ), with novel Se···O noncovalent conformational locks is designed and synthesized. DESVS unique properties are supported by density functional theory computed electronic structures, single crystal structures, and experimental lattice cohesion metrics. Based on this building block, a new class of stable, structurally planar, and solution‐processable conjugated polymers are synthesized and implemented in organic thin‐film transistors (TFT) and organic photovoltaic (OPV) cells. DESVS ‐based polymers exhibit carrier mobilities in air as high as 1.49 cm2 V?1 s?1 (p‐type) and 0.65 cm2 V?1 s?1 (n‐type) in TFTs, and power conversion efficiency >5% in OPV cells.  相似文献   

15.
《Thin solid films》1998,320(1):141-146
Thermal stability and barrier performance of reactively sputter deposited Ta–Si–N thin films between Si and Cu were investigated. RF powers of Ta and Si targets were fixed and various N2/Ar flow ratios were adopted to change the amount of nitrogen in Ta–Si–N thin films. The structure of the films are amorphous and the resistivity increases with nitrogen content. After annealing of Si/Ta–Si–N(300 Å)/Cu(1000 Å) structures in Ar–H2 (10%) ambient, sheet resistance measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Auger electron spectroscopy (AES) were employed to characterize barrier performance. Cu3Si and tantalum silicide phase are formed at the same temperature, and the interdiffusion of Si and Cu occurs through the local defect sites. In all characterization techniques, nitrogen in the film appears to play an important role in thermal stability and resistance against Cu diffusion. A 300 Å thick Ta43Si4N53 barrier shows the excellent barrier property to suppress the formation of Cu3Si phase up to 800°C.  相似文献   

16.
By fine‐tuning the crystal nucleation and growth process, a low‐temperature‐gradient crystallization method is developed to fabricate high‐quality perovskite CH3NH3PbBr3 single crystals with high carrier mobility of 81 ± 5 cm2 V?1 s?1 (>3 times larger than their thin film counterpart), long carrier lifetime of 899 ± 127 ns (>5 times larger than their thin film counterpart), and ultralow trap state density of 6.2 ± 2.7 × 109 cm?3 (even four orders of magnitude lower than that of single‐crystalline silicon wafers). In fact, they are better than perovskite single crystals reported in prior work: their application in photosensors gives superior detectivity as high as 6 × 1013 Jones, ≈10–100 times better than commercial sensors made of silicon and InGaAs. Meanwhile, the response speed is as fast as 40 µs, ≈3 orders of magnitude faster than their thin film devices. A large‐area (≈1300 mm2) imaging assembly composed of a 729‐pixel sensor array is further designed and constructed, showing excellent imaging capability thanks to its superior quality and uniformity. This opens a new possibility to use the high‐quality perovskite single‐crystal‐based devices for more advanced imaging sensors.  相似文献   

17.
The fabrication of mechanically superior polymer composite films with controllable shapes on various scales is difficult. Despite recent research on polymer composites consisting of organic matrices and inorganic materials with layered structures, these films suffer from complex preparations and limited mechanical properties that do not have even integration of high strength, stiffness, and toughness. Herein, a hydrogel‐film casting approach to achieve fabrication of simultaneously strong, stiff, and tough polymer composite films with well‐defined microstructure, inspired from a layer‐by‐layer structure of nacre is reported. Ca2+‐crosslinked alginate hydrogels incorporated with platelet‐like alumina particles are dried to form composite films composed of horizontally aligned alumina platelets and alginate matrix with uniformly layered microstructure. Alumina platelets are evenly distributed parallel without precipitations and contribute to synergistic enhancements of strength, stiffness and toughness in the resultant film. Consequentially, Ca2+‐crosslinked alginate/alumina (Ca2+‐Alg/Alu) films show exceptional tensile strength (267 MPa), modulus (17.9 GPa), and toughness (3.60 MJ m−3). Furthermore, the hydrogel‐film casting allows facile preparation of polymer composite films with controllable shapes and various scales. The results suggest an alternative approach to design and prepare polymer composites with the layer‐by‐layer structure for superior mechanical properties.  相似文献   

18.
Pulsed laser deposition (PLD) technique has been widely used in thin film preparation because of its wonderful and excellent properties and amorphous carbon nitride (CNx) thin films are recognized to have potential for applications like hard coating and electron field emission device. We have deposited CNx thin films by KrF excimer laser – (λ= 248 nm) ablation of pure graphite target in pure NO gas ambient condition. In this paper, we have prepared the CNx thin films at various ambient NO gas pressure of 1.3–26 Pa and laser fluence of 2– 5J cm?2 on Si (100) substrate. We consider that the hardness of CNx thin films improves due to the increase the nitrogen/carbon (N/C) ratio. The N/C ratio depended on the ambient NO gas pressure and laser fluence. We obtainedthe maximum N/C ratio of 1.0 at NO 3.3 Pa. The typical absorption of CN bonds such as sp2 C–N, sp3 C–N, G band and D band were detected from the infrared absorption measurement by FTIR in the deposited CNx thin films.  相似文献   

19.
It is greatly intriguing yet remains challenging to construct single‐atomic photocatalysts with stable surface free energy, favorable for well‐defined atomic coordination and photocatalytic carrier mobility during the photoredox process. Herein, an unsaturated edge confinement strategy is defined by coordinating single‐atomic‐site Ni on the bottom‐up synthesized porous few‐layer g‐C3N4 (namely, Ni5‐CN) via a self‐limiting method. This Ni5‐CN system with a few isolated Ni clusters distributed on the edge of g‐C3N4 is beneficial to immobilize the nonedged single‐atomic‐site Ni species, thus achieving a high single‐atomic active site density. Remarkably, the Ni5‐CN system exhibits comparably high photocatalytic activity for CO2 reduction, giving the CO generation rate of 8.6 µmol g?1 h?1 under visible‐light illumination, which is 7.8 times that of pure porous few‐layer g‐C3N4 (namely, CN, 1.1 µmol g?1 h?1). X‐ray absorption spectrometric analysis unveils that the cationic coordination environment of single‐atomic‐site Ni center, which is formed by Ni‐N doping‐intercalation the first coordination shell, motivates the superiority in synergistic N–Ni–N connection and interfacial carrier transfer. The photocatalytic mechanistic prediction confirms that the introduced unsaturated Ni‐N coordination favorably binds with CO2, and enhances the rate‐determining step of intermediates for CO generation.  相似文献   

20.
Black phosphorus (BP) has recently attracted significant attention due to its exceptional physical properties. Currently, high‐quality few‐layer and thin‐film BP are produced primarily by mechanical exfoliation, limiting their potential in future applications. Here, the synthesis of highly crystalline thin‐film BP on 5 mm sapphire substrates by conversion from red to black phosphorus at 700 °C and 1.5 GPa is demonstrated. The synthesized ≈50 nm thick BP thin films are polycrystalline with a crystal domain size ranging from 40 to 70 µm long, as indicated by Raman mapping and infrared extinction spectroscopy. At room temperature, field‐effect mobility of the synthesized BP thin film is found to be around 160 cm2 V?1 s?1 along armchair direction and reaches up to about 200 cm2 V?1 s?1 at around 90 K. Moreover, red phosphorus (RP) covered by exfoliated hexagonal boron nitride (hBN) before conversion shows atomically sharp hBN/BP interface and perfectly layered BP after the conversion. This demonstration represents a critical step toward the future realization of large scale, high‐quality BP devices and circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号