首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel CCD‐monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip‐sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light‐amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip‐sample approaching, convenient and effective tip‐sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider‐range AFM image under monitoring. Experiments show that this AFM system can offer real‐time optical vision for tip‐sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider‐range image measurement while keeping nanometer resolution. Microsc. Res. Tech. 76:931–935, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
P. JIN  X. LI 《Journal of microscopy》2015,260(3):268-280
Continuous research on small‐scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high‐resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift–time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three‐order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high‐resolution electron microscopic system.  相似文献   

3.
This paper analyses the three‐dimensional (3‐D) surface morphology of optic surface of unworn contact lenses (CLs) using atomic force microscopy (AFM) and wavelet transform. Refractive powers of all lens samples were 2.50 diopters. Topographic images were acquired in contact mode in air‐conditioned medium (35% RH, 23°C). Topographic measurements were taken over a 5 µm × 5 µm area with 512 pixel resolution. Resonance frequency of the tip was 65 kHz. The 3‐D surface morphology of CL unworn samples revealed (3‐D) micro‐textured surfaces that can be analyzed using (AFM) and wavelet transform. AFM and wavelet transform are accurate and sensitive tools that may assist CL manufacturers in developing CLs with optimal surface characteristics. Microsc. Res. Tech. 78:1026–1031, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
We report an ingenious method of super‐resolution optical microscopy utilizing scannable cantilever‐combined microsphere. By scanning the microsphere over the sample surface in a cantilever‐combined microsphere‐sample contact state, super‐resolution images can be acquired at arbitrary sample regions through near‐field information collection by the microsphere. In addition, such a state can effectively reduce the possibility of breaking the cantilever and damaging the microsphere or sample surface. This work has developed a new method and technique of sub‐diffraction‐limit optical microscopy, and can be practically applied in various fields of micro/nanoscopy. Microsc. Res. Tech. 78:1128–1132, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
We show a new atomic force microscopy technique for obtaining high‐resolution topographic images of large bio‐samples. To obtain high‐resolution topographic images for the samples, we fabricated a long polymeric tip with a small protrusion using two‐photon adsorbed photo‐polymerization techniques. The obtained tip length was over 50 µm, and the tip was used directly to visualize COS‐1 and 293 cells. Compared with commercial tips, the long tip made it easier to obtain topographic images of the large cells. In the magnified topographic images, the sub‐100‐nm resolution was confirmed with the long tips. This long probe tip is expected to broaden large sample‐related studies and applications in the future.  相似文献   

6.
Atomic force microscopy (AFM) provides a new technology to visualize the cellular topography and quantify the molecular interactions at nanometer spatial resolution. In this work, AFM was used to image the cellular topography and measure the molecular force of pathological cells from B‐cell lymphoma patients. After the fluorescence staining, cancer cells were recognized by their special morphological features and then the detailed topography was visualized by AFM imaging. The AFM images showed that cancer cells were much rougher than healthy cells. CD20 is a surface marker of B cells and rituximab is a monoclonal antibody against CD20. To measure the CD20‐rituximab interaction forces, the polyethylene glycol (PEG) linker was used to link rituximab onto the AFM tip and the verification experiments of the functionalized probe indicated that rituximab molecules were successfully linked onto the AFM tip. The CD20‐rituximab interaction forces were measured on about 20 pathological cells and the force measurement results indicated the CD20‐rituximab binding forces were mainly in the range of 110–120 pN and 130–140 pN. These results can improve our understanding of the topography and molecular force of lymphoma pathological cells. SCANNING 35:40‐46, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Wu Y  Hu Y  Cai J  Ma S  Wang X  Chen Y 《Scanning》2008,30(5):426-432
Atomic force microscopy (AFM) has been widely applied in cellular morphology study. However, morphological information including volume and roughness obtained by AFM are usually affected by different kinds of factors, which include the microscopic system itself, imaging mode, or external factors such as AFM probe or tip condition. In this study, based on red blood cell model, the dependence of cellular morphology, volume, and roughness on several parameters of the imaging was evaluated and, furthermore, a general rule and resolution for trustful analysis had been suggested. In addition, the potential effects that resulted from sample itself had also been analyzed based on adhesive force analysis. The results indicated that the scanning range and the imaging mode affect cellular volume and roughness, and the distorted images should be ascribed to blunt tip, contaminated tip, and the shape of tip. The analysis of morphological distortion during AFM investigation of cells provides a reference for researchers using AFM.  相似文献   

8.
Several Scanning microscopy techniques were used to investigate the leaf surface ultrastructure in the local “Razegui” grapevine cultivar (Vitis vinifera L.). Conventional scanning electron microscopy performed on glutaraldehyde‐fixed samples allowed observation of well‐preserved epidermal cells with an overlaying waxy layer. At a high magnification, the waxy layer exhibited crystalline projections in the form of horizontal and vertical platelets. Also, to avoid eventual ultrastructural alterations inherent in the use of solvents during sample preparation, fresh leaf blade samples were directly observed by environmental scanning electron microscopy. A classical image of convex living epidermal cells was observed. At 2400× magnification, epicuticular waxes exhibited a granular structure. However, high‐magnification images were not obtained with this device. The atomic force microscopy (AFM) performed on fresh leaf blade samples allowed observation of a textured surface and heterogeneous profiles attributed to epicuticular wax deposits. AFM topography images confirmed further, the presence of irregular crystalloid wax projections as multishaped platelets on the adaxial surface of grapevine leaf. SCANNING 31: 127–131, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
The authors fabricated a probe tip with various sizes and examined the size dependency of the probe tip on the distribution of retraction forces between actin and anti-actin. Probe tips of various sizes were fabricated by two-photon polymerization methods on a micro cantilever of an atomic force microscope (AFM). The authors succeeded in fabricating a spherical tip having a smooth surface and the tip size varied between φ 0.8 and 5.5 μm. Anti-actin was immobilized on the fabricated probe tips and force curves were measured against an actin-immobilized mica substrate by AFM to analyze the retraction forces. The histograms of retraction forces showed that the single-molecular retraction force between actin and anti-actin was ca. 350–400 pN. It was observed that the average retraction forces for each tip size correlated with the square of the tip radius.  相似文献   

10.
A sphere attached to a cantilever is used simultaneously as an atomic force microscope (AFM) tip and as a curved reflective surface for producing scanning reflection interference contrast microscope (RICM) images of fluorescent beads dried onto a glass slide. The AFM and RICM images are acquired in direct registration which enables the identification of individually excited beads in the AFM images. The addition of a sharp, electron beam-deposited tip to the sphere gives nanometer resolution AFM images without loss of optical contrast.  相似文献   

11.
The use of flared tip and bi-directional servo control in some recent atomic force microscopes (AFM) has made it possible for these advanced AFMs to image structures of general shapes with undercut surfaces. AFM images are distorted representations of sample surfaces due to the dilation produced by the finite size of the tip. It is necessary to obtain the tip shape in order to correct such tip distortion. This paper presents a noise-tolerant approach that can for the first time estimate a general 3-dimensional (3D) tip shape from its scanned image in such AFMs. It extends an existing blind tip estimation method. With the samples, images, and tips described by dexels, a representation that can describe general 3D shapes, the new approach can estimate general tip shapes, including reentrant features such as undercut lines.  相似文献   

12.
The purpose of this work is to study the dependence of AFM‐data reliability on scanning rate. The three‐dimensional (3D) surface topography of the samples with different micro‐motifs is investigated. The analysis of surface metrics for estimation of artifacts from inappropriate scanning rate is presented. Fractal analysis was done by cube counting method and evaluation of statistical metrics was carrying out on the basis of AFM‐data. Combination of quantitate parameters is also presented in graphs for every measurement. The results indicate that the sensitivity to scanning rate growths with fractal dimension of the sample. This approach allows describing the distortion of the images against scanning rate and could be applied for dependences on the other measurement parameters. The article explains the relevance and comparison of fractal and statistical surface parameters for characterization of data distortion caused by inappropriate choice of scanning rate.  相似文献   

13.
Perpendicular or parallel magnetic fields are used to magnetize the tips used in magnetic force microscopy (MFM). In this process, perpendicular or parallel magnetic dipole moments are produced on the tip plane, thus leading to the formation of polar magnetized tips (PM‐tips) or longitudinally magnetized tips (LM‐tips), respectively. The resolution of an MFM image of a magneto‐optic disk is used for calibration of these tips, and the saturated magnetic fields of the PM‐ and LM‐tips are found to be 2720 Oe and 680 Oe, respectively. Because both tips can simultaneously magnetize the sample during the scanning process when measuring a Co thin film, clear MFM images are captured, which enable the identification of magnetizable regions and the distribution of the magnetic domains on the sample surface. These results will be useful for improving the manufacturing processes required for soft nano‐magnetic film production.  相似文献   

14.
A combined scanning probe microscope has been developed that allows simultaneous operation as a non‐contact/tapping mode atomic force microscope, a scattering near‐field optical microscope, and a scanning tunnelling microscope on conductive samples. The instrument is based on a commercial optical microscope. It operates with etched tungsten tips and exploits a tuning fork detection system for tip/sample distance control. The system has been tested on a p‐doped silicon substrate with aluminium depositions, being able to discriminate the two materials by the electrical and optical images with a lateral resolution of 130 nm.  相似文献   

15.
The fabrication of silicon cantilever‐based scanning near‐field optical microscope probes with fully aluminium‐coated quartz tips was optimized to increase production yield. Different cantilever designs for dynamic‐ and contact‐mode force feedback were implemented. Light transmission through the tips was investigated experimentally in terms of the metal coating and the tip cone‐angle. We found that transmittance varies with the skin depth of the metal coating and is inverse to the cone angle, meaning that slender tips showed higher transmission. Near‐field optical images of individual fluorescing molecules showed a resolution < 100 nm. Scanning electron microscopy images of tips before and after scanning near‐field optical microscope imaging, and transmission electron microscopy analysis of tips before and after illumination, together with measurements performed with a miniaturized thermocouple showed no evidence of mechanical defect or orifice formation by thermal effects.  相似文献   

16.
One of the factors that limit the spatial resolution in atomic force microscopy (AFM) is the physical size of the probe. This limitation is particularly severe when the imaged structures are comparable in size to the tip's apex. The resolution in the AFM is usually enhanced by using sharp tips with high aspect ratios. In the present paper we propose an approach to modify AFM tips that consists of depositing nanoclusters on standard silicon tips. We show that the use of those tips leads to atomic force microscopy images of higher aspect ratios and spatial resolution. The present approach has two major properties. It provides higher aspect-ratio images of nanoscale objects and, at the same time, enables to functionalize the AFM tips by depositing nanoparticles with well-controlled chemical composition.  相似文献   

17.
Chen Y  Cai J  Liu M  Zeng G  Feng Q  Chen Z 《Scanning》2004,26(4):155-161
Information obtained by atomic force microscopy (AFM) depends strongly on the kind of probe or tip used; therefore, probe and tip effects have to be taken into account when verifying or interpreting the data acquired. In many papers, double-tip effects have been mentioned while other research was done; however, there are only a few special reports on double- or triple-tip effects, especially double-probe effects. In our paper, metaphase chromosomes of Chinese hamster ovary (CHO) cells, aggregates of pectin molecules, membrane surface of mouse embryonic stem cells, and R-phycoerythrin-conjugated immunoglobulin G complexes were imaged by AFM with high-quality probes, double-probe cantilever, and double-tip and triple-tip probes, respectively, in order to determine double-probe, double-tip, and triple-tip effects during AFM scanning. We found that the double-probe, double-tip, and triple-tip effects share the same principle, and that these effects correlate with distance and height differences between probes of double-probe cantilever or tips of double-tip or multiple-tip probes. Since many other factors influence double-probe or double-tip effects, more in-depth studies must be undertaken. However, this initial research will make all users of AFM techniques aware of double-probe and double-tip or triple-tip effects during AFM scanning and aid in verifying or interpreting the data acquired.  相似文献   

18.
Objectives: The goal of this study was to examine the feasibility of in vivo imaging of trabecular bone around titanium implants by means of microfocus computed tomography (micro‐CT) and the use of rabbits for this purpose. Materials and Methods: Ten male rabbits type Hollander, received a titanium implant (1.7 mm diameter and 10 mm length) in the trabecular bone of the left tibia. Seven weeks later a micro‐CT scan was taken. Four rabbits were used to monitor potential harmful effects from X‐ray absorption until 4 weeks after scanning. A second group of six rabbits was used for testing the hypothesis that a good correlation exists between in vivo micro‐CT images and histological images of trabecular bone around titanium implants. The six rabbits were scanned and sacrificed immediately. The tibias were extracted and submitted to standard histological procedures. This resulted in a total of 12 histological sections and their corresponding 12 micro‐CT images. Bone area measurements were performed at the left and right side of the implant in three regions: 0–500, 500–1000 and 1000–1500 μm distance from the implant interface. Intra‐class correlations (ICC) were calculated between both techniques. Results: The four rabbits did not show any sign of radiodermatitis 4 weeks after scanning. In the micro‐CT images of the group of six rabbits, trabeculae are visible, but not well defined, due to the presence of noise in the image. The ICC for the right implant side were 0.44 for zone 0–500 μm, 0.48 for zone 500–1000 μm and 0.40 for zone 1000–1500 μm. The ICC for the left implant side could not be calculated. Conclusion: A low agreement was found between the bone measurements from histology and in vivo micro‐CT images. The use of the in vivo micro‐CT for trabecular bone imaging around metallic implants should be restricted to track tendencies in follow‐up studies.  相似文献   

19.
Tobacco mosaic virus (TMV) has been deposited on freshly cleaved mica substrates. The topography was investigated by contact, non-contact and lateral-force microscopy under ambient conditions in air. The results were in accord with known dimensions of TMV (i.e. 18 nm in diameter and 300 nm in length). However, convolution of tip shape with TMV morphology resulted in an apparent width of 80–140 nm in the lateral plane, a factor of 4–7 greater than the known diameter. Other artefacts - broadening and double images - were observed and ascribed to tip anomalies. High force loadings and slow repetitive scanning resulted in controlled removal of parts of the TMV structure. Accordingly, it was possible to reveal and image the central core channel of the TMV. The precision and resolution of dissection induced by AFM is currently limited by the shape of the tip, having a 40-nm radius of curvature for standard Si3N4 tips. It is estimated that sharper tips, with a radius of curvature of less than 10 nm, should be able to resolve, non-destructively, the protein subunits in the non-contact mode, and selectively remove single subunits in the contact mode.  相似文献   

20.
Atomic force microscopy (AFM) proved to be able to obtain high‐resolution three‐dimensional images of single‐membrane proteins, isolated, crystallized, or included in reconstructed model membranes. The extension of this technique to native systems, such as the protein immersed in a cell membrane, needs a careful manipulation of the biological sample to meet the experimental constraints for high‐resolution AFM imaging. In this article, a general protocol for sample preparation is presented, based on the mechanical stretch of the cell membrane. The effectiveness for AFM imaging has been tested on the basis of an integrated optical and AFM approach and the proposed method has been applied to cells expressing cystic fibrosis transmembrane conductance regulator, a channel involved in cystic fibrosis, showing the possibility to identify and analyze single proteins in the plasma membrane. Microsc. Res. Tech. 76:723–732, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号