首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo2Ti2C3 is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo2Ti2C3 under electron irradiation is investigated. A transmission electron microscope (TEM) is used to study the structural and elemental changes in situ. It is found that Mo2Ti2C3 is reasonably stable for the first 2 min of irradiation. However, structural changes occur thereafter, which trigger increasingly rapid and significant rearrangement. This results in the formation of pores and two new nanomaterials, namely, N‐doped graphene membranes and Mo nanoribbons. The study provides insight into the stability of Mo2Ti2C3 monolayers against electron irradiation, which will allow for reliable future study of the material using TEM. Furthermore, these findings will facilitate further research in the rapidly growing field of electron beam driven chemistry and engineering of nanomaterials.  相似文献   

2.
It is shown that heavily ozonized C60 or C70 fullerenes (known also as “fullerene ozopolymers”) are suitable substrates for the preparation of graphene or nanographene in place of graphite oxide (GO) by thermal reduction in inert atmosphere. TGA-FTIR study shows that the release profile of CO2 and CO from fullerene ozopolymers in the temperature range between 25°C and 900°C is comparable to that shown by GO. Furthermore, the FT-IR spectral evolution of fullerene ozopolymers from room temperature to 630°C under inert atmosphere is once again strikingly comparable to that observed on GO under the same conditions.  相似文献   

3.
Jun  Byung-Moon  Kim  Sewoon  Heo  Jiyong  Park  Chang Min  Her  Namguk  Jang  Min  Huang  Yi  Han  Jonghun  Yoon  Yeomin 《Nano Research》2019,12(3):471-487

Energy and environmental issues presently attract a great deal of scientific attention. Recently, two-dimensional MXenes and MXene-based nanomaterials have attracted increasing interest because of their unique properties (e.g., remarkable safety, a very large interlayer spacing, environmental flexibility, a large surface area, and thermal conductivity). In 2011, multilayered MXenes (Ti3C2Tx, a new family of two-dimensional (2D) materials) produced by etching an A layer from a MAX phase of Ti3AlC2, were first described by researchers at Drexel University. The term “MXene” was coined to distinguish this new family of 2D materials from graphene, and applies to both the original MAX phases and MXenes fabricated from them. We present a comprehensive review of recent studies on energy and environmental applications of MXene and MXene-based nanomaterials, including energy conversion and storage, adsorption, membrane, photocatalysis, and antimicrobial. Future research needs are discussed briefly with current challenges that must be overcome before we completely understand the extraordinary properties of MXene and MXene-based nanomaterials.

  相似文献   

4.
Periodically hydrogenated graphene is predicted to form new kinds of crystalline 2D materials such as graphane, graphone, and 2D CxHy, which exhibit unique electronic properties. Controlled synthesis of periodically hydrogenated graphene is needed for fundamental research and possible electronic applications. Only small patches of such materials have been grown so far, while the experimental fabrication of large‐scale, periodically hydrogenated graphene has remained challenging. In the present work, large‐scale, periodically hydrogenated graphene is fabricated on Ru(0001). The as‐fabricated hydrogenated graphene is highly ordered, with a √3 × √3/R30° period relative to the pristine graphene. As the ratio of hydrogen and carbon is 1:3, the periodically hydrogenated graphene is named “one‐third‐hydrogenated graphene” (OTHG). The area of OTHG is up to 16 mm2. Density functional theory calculations demonstrate that the OTHG has two deformed Dirac cones along one high‐symmetry direction and a finite energy gap along the other directions at the Fermi energy, indicating strong anisotropic electrical properties. An efficient method is thus provided to produce large‐scale crystalline functionalized graphene with specially desired properties.  相似文献   

5.
The notions of nanoscale “phase speciation” and “phase diagram” are defined and discussed in terms of kinetic and thermodynamic controls, based on the case of metal phosphide nanoparticles. After an overview of the most successful synthetic routes for these exotic nanomaterials, the cases of InP, Ni2P, Ni12P5 and PdxPy are discussed in detail to highlight the relationship between composition, structure, and size at the nanoscale. The influence of morphology is discussed next by comparing the behavior of Cu3P nanophases with those of NixPy, FeP/Fe2P, and CoP/Co2P. Perspectives provide the reader with methodological guidelines for further investigation of nanoscale “phase diagrams”, and their use for optimized synthesis of new functional nanomaterials.  相似文献   

6.
Layered titania (L-TiO2) holds great potential for potassium-ion batteries (PIBs) and sodium-ion batteries (SIBs) due to their high specific capacity. Synthesizing L-TiO2 functional materials for high-capacity and long cyclability battery remains challenging due to the unstable and poor conductivity of bare L-TiO2. In nature, plant growth can stabilize land by preventing sands from dispersing following desertification. Inspired by nature's “sand-fixation model,” Al3+ “seeds” are in situ grown on layered Ti3C2Tx “land.” Subsequently, NH2-MIL-101(Al) “plants” with Al as metal nodes are grown on the Ti3C2Tx “land” by self-assembly. After annealing and etching processes (similar to desertification), NH2-MIL-101(Al) is transformed into interconnected N/O-doped carbon (MOF-NOC), which not only acts as a plant-like function to prevent the pulverization of L-TiO2 transformed from Ti3C2Tx but also improves the conductivity and stability of MOF-NOC@L-TiO2. Al species are selected as seeds to improve interfacial compatibility and form intimate interface heterojunction. Systematic ex situ analysis discloses that the ions storage mechanism can be endowed by mixed contribution of non-Faradaic and Faradaic capacitance. Consequently, the MOF-NOC@L-TiO2 electrodes exhibit high interfacial capacitive charge storage and outstanding cycling performance. The interface engineering strategy inspired by “sand-fixation model” provides a reference for designing stable layered composites.  相似文献   

7.
2D nanomaterials, particularly graphene, offer many fascinating physicochemical properties that have generated exciting visions of future biological applications. In order to capitalize on the potential of 2D nanomaterials in this field, a full understanding of their interactions with biointerfaces is crucial. The uptake pathways, toxicity, long‐term fate of 2D nanomaterials in biological systems, and their interactions with the living systems are fundamental questions that must be understood. Here, the latest progress is summarized, with a focus on pathogen, mammalian cell, and tissue interactions. The cellular uptake pathways of graphene derivatives will be discussed, along with health risks, and interactions with membranes—including bacteria and viruses—and the role of chemical structure and modifications. Other novel 2D nanomaterials with potential biomedical applications, such as transition‐metal dichalcogenides, transition‐metal oxide, and black phosphorus will be discussed at the end of this review.  相似文献   

8.
Graphene has initiated intensive research efforts on 2D crystalline materials due to its extraordinary set of properties and the resulting host of possible applications. Here the authors report on the controllable large‐scale synthesis of C3N, a 2D crystalline, hole‐free extension of graphene, its structural characterization, and some of its unique properties. C3N is fabricated by polymerization of 2,3‐diaminophenazine. It consists of a 2D honeycomb lattice with a homogeneous distribution of nitrogen atoms, where both N and C atoms show a D6h‐symmetry. C3N is a semiconductor with an indirect bandgap of 0.39 eV that can be tuned to cover the entire visible range by fabrication of quantum dots with different diameters. Back‐gated field‐effect transistors made of single‐layer C3N display an on–off current ratio reaching 5.5 × 1010. Surprisingly, C3N exhibits a ferromagnetic order at low temperatures (<96 K) when doped with hydrogen. This new member of the graphene family opens the door for both fundamental basic research and possible future applications.  相似文献   

9.
Graphene oxide was prepared by the Hummers’ method and then functionalized with 4-substituted benzoic acid via “direct Friedel–Crafts” acylation in a mild reaction medium of polyphosphoric acid/phosphorous pentoxide (P2O5). Raman spectroscopy, differential scanning calorimetry, thermo-gravimetric analysis, and transmission electron microscopy were used to characterize the resultant structure. The results show that 4-substituted benzoic acid functionalized graphene (FG) sheets were achieved without pretreatment of oxidation. Polycaprolactam (PA6)-FG composites were prepared by in situ polymerization of ε-caprolactam in the presence of FG. Nanocomposite fiber with 0.01–0.5?wt% content of FG was prepared with a piston spinning machine and hot-roller drawing machine. A significant enhancement of mechanical properties of the PA6-FG composites’ fiber is obtained at low graphene loading; that is, a 29?% improvement of tensile strength and a three times increase of Young’s modulus are achieved at a graphene loading of only 0.1?wt%. The “graft-from” methodologies pave the way to prepare graphene-based nanocomposites of condensation polymers with promising performance and functionality.  相似文献   

10.
The selective hydrogenation of acetylene to ethylene in an ethylene‐rich gas stream is an important process in the chemical industry. Pd‐based catalysts are widely used in this reaction due to their excellent hydrogenation activity, though their selectivity for acetylene hydrogenation and durability need improvement. Herein, the successful synthesis of atomically dispersed Pd single‐atom catalysts on nitrogen‐doped graphene (Pd1/N‐graphene) by a freeze‐drying‐assisted method is reported. The Pd1/N‐graphene catalyst exhibits outstanding activity and selectivity for the hydrogenation of C2H2 with H2 in the presence of excess C2H4 under photothermal heating (UV and visible‐light irradiation from a Xe lamp), achieving 99% conversion of acetylene and 93.5% selectivity to ethylene at 125 °C. This remarkable catalytic performance is attributed to the high concentration of Pd active sites on the catalyst surface and the weak adsorption energy of ethylene on isolated Pd atoms, which prevents C2H4 hydrogenation. Importantly, the Pd1/N‐graphene catalyst exhibits excellent durability at the optimal reaction temperature of 125 °C, which is explained by the strong local coordination of Pd atoms by nitrogen atoms, which suppresses the Pd aggregation. The results presented here encourage the wider pursuit of solar‐driven photothermal catalyst systems based on single‐atom active sites for selective hydrogenation reactions.  相似文献   

11.
Honeycomb-like NiMoO4 with nanosheet arrays is grown on reduced graphene oxide, which is supported on Ni foam having successfully fabricated by a simple hydrothermal treatment followed by a calcined process. In the as-synthesized Ni foam@reduced graphene oxide@NiMoO4, Ni foam served as “skeleton” to support reduced graphene oxide and reduced graphene oxide directly grown on Ni foam served as the “skin” to provide high passway of electrons and ions, which simultaneously accommodated the volume change during the process of charge–discharge and NiMoO4 acted as active substance to provide high areal capacitance. It shows a high areal capacitance of 2165.9 mF cm?2 at a current density of 1 mA cm?2 and long cycle stability with 93.8% capacitance retained over 1000 charge–discharge cycles. Moreover, an asymmetric supercapacitor has been constructed by using Ni foam@reduced graphene oxide and Ni foam@reduced graphene oxide@NiMoO4 as negative and positive electrodes. The energy density of this asymmetric supercapacitor is 0.579 mWh cm?2, and it retains 93.1% capacitance over charge–discharge 5000 cycles. Therefore, it reveals great promise for practical applications in energy storage devices.  相似文献   

12.
Inherently nanostructured CPx compounds were studied by first-principles calculations. Geometry optimizations and cohesive energy comparisons show stability for C3P, C2P, C3P2, CP, and P4 (P2) species in isolated form as well as incorporated in graphene layers. The energy cost for structural defects, arising from the substitution of C for P and intercalation of P atoms in graphene, was also evaluated. We find a larger curvature of the graphene sheets and a higher density of cross-linkage sites in comparison to fullerene-like (FL) CNx, which is explained by differences in the bonding between P and N. Thus, the computational results extend the scope of fullerene-like thin film materials with FL-CPx and provide insights for its structural properties.  相似文献   

13.
Two-dimensional nano-crystals, nanosheets, are a new special type of nanomaterials recently discovered. They have attracted interest due to their unique potential applications especially in electronics. In this mini review, we present the current status of liquid exfoliation of layered crystals — an original new method of production of nanosheets. This “top down” synthesis is a low-temperature physico-chemical process already used to graphene production.  相似文献   

14.
Nanomaterials in biological solutions are known to interact with proteins and have been documented to affect protein function, such as enzyme activity. Understanding the interactions of nanoparticles with biological components at the molecular level will allow for rational designs of nanomaterials for use in medical technologies. Here we present the first detailed molecular mechanics model of functionalized gold nanoparticle (NP) interacting with an enzyme (l ‐lactate dehydrogenase (LDH) enzyme). Molecular dynamics (MD) simulations of the response of LDH to the NP binding demonstrate that although atomic motions (dynamics) of the main chain exhibit only a minor response to the binding, the dynamics of side chains are significantly constrained in all four active sites that predict alteration in kinetic properties of the enzyme. It is also demonstrated that the 5 nm gold NPs cause a decrease in the maximal velocity of the enzyme reaction (Vmax) and a trend towards a reduced affinity (increased Km) for the β‐NAD binding site, while pyruvate enzyme kinetics (Km and Vmax) are not significantly altered in the presence of the gold NPs. These results demonstrate that modeling of NP:protein interactions can be used to understand alterations in protein function.  相似文献   

15.
Graphite oxide (GO) and heavily ozonized C60 and C70 fullerenes known as “fullerene ozopolymers” were studied by TGA-FTIR (Thermogravimetry coupled with FT-IR spectroscopy), DTG (Differential Thermogravimetry) and DTA (Differential Thermal Analysis) in air flow. It was found that GO burns at 70°C higher temperature than the fullerene ozopolymers. This different behavior toward the thermal oxidation of GO is due to the size of the oxidized and staked graphene layers which are expected to be significantly larger than those of the fullerene ozopolymers. Furthermore, the latter should necessarily have a buckybowl shaped structure which should favor their reactivity with oxygen.  相似文献   

16.
Halogen functionalization of the edges of the graphene sheets can improve processability, add new properties, and enhance its interactions with other materials. Through functionalization, improved materials can be realized. Typically, halogenated graphenes are produced from pure or reactive halogen sources. Current approaches present significant safety challenges. By generating reactive dichlorine monoxide (Cl2O) in situ, a chlorinated graphene with the nominal composition C17Cl2OH can be realized safely and scalably. Chlorinated graphene can be used as a precursor for an array of functionalized materials by mechanically driven solid-state metathesis reactions. For example, nearly 75% of the chlorine in chlorinated graphene can be exchanged with fluorine by using the safer fluorine-containing compound ammonium fluoride (NH4F) as a reagent. A material with the composition C34Cl3F(OH)2 is realized. Preliminary work shows that F–graphene has oxygen reduction properties and Cl–graphene can improve existing zinc–air fuel cells. A scalable production of chlorinated and fluorinated graphenes and graphites will accelerate their adoption in fuel cells, batteries, polymer composites, and catalysts.  相似文献   

17.
An unprecedented microwave‐based strategy is developed to facilitate solid‐phase, instantaneous delamination and decomposition of graphite fluoride (GF) into few‐layer, partially fluorinated graphene. The shock reaction occurs (and completes in few seconds) under microwave irradiation upon exposing GF to either “microwave‐induced plasma” generated in vacuum or “catalyst effect” caused by intense sparking of graphite at ambient conditions. A detailed analysis of the structural and compositional transformations in these processes indicates that the GF experiences considerable exfoliation and defluorination, during which sp2‐bonded carbon is partially recovered despite significant structural defects being introduced. The exfoliated fluorinated graphene shows excellent electrochemical performance as anode materials in potassium ion batteries and as catalysts for the conversion of O2 to H2O2. This simple and scalable method requires minimal energy input and does not involve the use of other chemicals, which is attractive for extensive research in fluorine‐containing graphene and its derivatives in laboratories and industrial applications.  相似文献   

18.
Abstract

Various “living” polymers were grafted onto C60 The number of arms of the so obtained “star” molecules can be controlled by stoechiometry and/or by varying the reactivity of the carbanion on the “living” chain against a double bond on the C60. Even the oxanion of “living” polyethylenoxide is able to add onto the reactive double bonds on C60. In some conditions, the carbanions present on these alkaline salts of grafted fullerenes becomes able to initiate anionic polymerization of vinyl monomers. Using “living” poly(phenylvinylsulfoxide) as a precursor polymer for PA, polyacetylene chains could be attached to the fullerene.  相似文献   

19.
As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene's hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously.  相似文献   

20.
A new type of water corrosion-resistant coating which is similar to the “egg inlaid egg tray” structure is successfully prepared. Modified chitosan (MCS) and graphene oxide (GO) are crosslinked with waterborne epoxy resin to form a unique 3D “tray” hybrid structure, and the crosslinking reaction is catalyzed by modified nano-SiO2 (MSiO2) with an egg-like morphology. The uniformly dispersed MSiO2 can provide crosslinking reaction sites and is firmly “fixed” in the composite coating, thus not only catalyzing the crosslinking reactions with good performance, but also improving the interaction between itself and the as-formed GO-MCS structure. Consequently, with the help of “fixed catalytic in situ crosslinking reactions” and synergistic effect between MSiO2 and GO-MCS, the coating not only shows an improved corrosion resistance with a large impedance modulus at low frequency (|Z|0.01 Hz) of 1.8 × 106 Ω cm2, but also possesses good thermal stability and high hydrophobicity. The protective effect of the composite coating on the substrate is more comprehensive and multiple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号