首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic microcrystals are of essential importance for high fluorescence efficiency, ordered molecular packing mode, minimized defects, and smooth shapes, which are extensively applied in organic optoelectronics. The molecular packing mode significantly influences the optical/electrical properties of organic microcrystals, which makes the controllable preparation of organic microcrystals with desired molecular packing mode extremely important. In the study, yellow‐emissive α phase organic microcrystals with rectangular morphology and green‐emissive β phase perylene microcrystals with rhombic morphology are separately prepared by simply controlling the solution concentration. The distinct molecular staking modes of the H/J‐aggregate are found in these two types of perylene microcrystals, which contribute to the different emission color, morphology, and radiative decay rate. What is more interesting, the α‐doped β phase and the β‐doped α phase organic microcrystals can also be fabricated by modulating the evaporation rate from 100 to 10 µL min?1. The findings can contribute to the future development of organic optoelectronics at the microscale.  相似文献   

2.
Most long‐persistent luminescent (LPL) materials, which slowly release energy absorbed from ambient light, are based on inorganic compounds. Organic long‐persistent luminescent (OLPL) systems have advantages over inorganic LPL materials in terms of solubility, transparency, and flexibility. Here, the characteristics of OLPL emission are improved by doping emitter molecules into an OLPL matrix. Greenish‐blue to red and even warm white emission are achieved by energy transfer from exciplex in the OLPL matrix to the emitter dopants. The dopants also improve brightness and emission duration through efficient radiative decay and the trapping of electrons, respectively. This technique will enable the development of a wide range of organic glow‐in‐the‐dark paints.  相似文献   

3.
4.
Efficient vacuum‐processed organic light‐emitting diodes are fabricated using a carbene–metal–amide material, CMA1. An electroluminescence (EL) external quantum efficiency of 23% is achieved in a host‐free emissive layer comprising pure CMA1. Furthermore external quantum efficiencies of up to 26.9% are achieved in host–guest emissive layers. EL spectra are found to depend on both the emissive‐layer doping concentration and the choice of host material, enabling tuning of emission color from mid‐green (Commission Internationale de l'Éclairage co‐ordinates [0.24, 0.46]) to sky blue ([0.22 0.35]) without changing dopant. This tuning is achieved without compromising luminescence efficiency (>80%) while maintaining a short radiative lifetime of triplets (<1 μs).  相似文献   

5.
Ambipolar organic field‐effect transistors (OFETs) combining single‐crystalline p‐ and n‐type organic micro/nanocrystals have demonstrated superior performance to their amorphous or polycrystalline thin‐film counterparts. However, large‐area alignment and precise patterning of organic micro/nanocrystals for ambipolar OFETs remain challenges. Here, a surface‐energy‐controlled stepwise crystallization (SECSC) method is reported for large‐scale, aligned, and precise patterning of single‐crystalline laterally stacked p–n heterojunction microbelt (MB) arrays. In this method, the p‐ and n‐type organic crystals are precipitated via a stepwise process: first, the lateral sides of prepatterned photoresist stripes provide high‐surface‐energy sites to guide the aligned growth of p‐type organic crystals. Next, the formed p‐type crystals serve as new high‐surface‐energy positions to induce the crystallization of n‐type organic molecules at their sides, thus leading to the formation of laterally stacked p–n microbelts. Ambipolar OFETs based on the p–n heterojunction MB arrays exhibit balanced hole and electron mobilities of 0.32 and 0.43 cm2 V?1 s?1, respectively, enabling the fabrication of complementary‐like inverters with large voltage gains. This work paves the way toward rational design and construction of single‐crystalline organic p–n heterojunction arrays for high‐performance organic, integrated circuits.  相似文献   

6.
Highly efficient solution‐processable emitters, especially deep‐blue emitters, are greatly desired to develop low‐cost and low‐energy‐consumption organic light‐emitting diodes (OLEDs). A recently developed class of potentially metal‐free emitters, thermally activated delayed fluorescence (TADF) materials, are promising candidates, but solution‐processable TADF materials with efficient blue emissions are not well investigated. In this study, first the requirements for the design of efficient deep‐blue TADF materials are clarified, on the basis of which, adamantyl‐substituted TADF molecules are developed. The substitution not only endows high solubility and excellent thermal stability but also has a critical impact on the molecular orbitals, by pushing up the lowest unoccupied molecular orbital energy and triplet energy of the molecules. In the application to OLEDs, an external quantum efficiency (EQE) of 22.1% with blue emission having Commission Internationale de l'Eclairage (CIE) coordinates of (0.15, 0.19) is realized. A much deeper blue emission with CIE (0.15, 0.13) is also achieved, with an EQE of 11.2%. These efficiencies are the best yet among solution‐processed TADF OLEDs of CIE y < 0.20 and y < 0.15, as far as known. This work demonstrates the validity of adamantyl substitution and paves a pathway for straightforward realization of solution‐processable efficient deep‐blue TADF emitters.  相似文献   

7.
Construction of high‐performance organic light‐emitting transistors (OLETs) remains challenging due to the limited desired organic semiconductor materials. Here, two superior high mobility emissive organic semiconductors, 2,6‐diphenylanthracene (DPA) and 2,6‐di(2‐naphthyl) anthracene (dNaAnt), are introduced into the construction of OLETs. By optimizing the device geometry for balanced ambipolar efficient charge transport and using high‐quality DPA and dNaAnt single crystals as active layers, high‐efficiency single‐component OLETs are successfully fabricated, with the demonstration of strong and spatially controlled light emission within both p‐ and n‐ conducting channels and output of high external quantum efficiency (EQE). The obtained EQE values in current devices are approaching 1.61% for DPA‐OLETs and 1.75% for dNaAnt‐based OLETs, respectively, which are the highest EQE values for single‐component OLETs in the common device configuration reported so far. Moreover, high brightnesses of 1210 and 3180 cd m?2 with current densities up to 1.3 and 8.4 kA cm?2 are also achieved for DPA‐ and dNaAnt‐based OLETs, respectively. These results demonstrate the great potential applications of high mobility emissive organic semiconductors for next‐generation rapid development of high‐performance single‐component OLETs and their related organic integrated electro‐optical devices.  相似文献   

8.
The development of high‐efficiency and low‐cost organic emissive materials and devices is intrinsically limited by the energy‐gap law and spin statistics, especially in the near‐infrared (NIR) region. A novel design strategy is reported for realizing highly efficient thermally activated delayed fluorescence (TADF) materials via J‐aggregates with strong intermolecular charge transfer (CT). Two organic donor–acceptor molecules with strong and planar acceptor are designed and synthesized, which can readily form J‐aggregates with strong intermolecular CT in solid states and exhibit wide‐tuning emissions from yellow to NIR. Experimental and theoretical investigations expose that the formation of such J‐aggregates mixes Frenkel excitons and CT excitons, which not only contributes to a fast radiative decay rate and a slow nonradiative decay rate for achieving nearly unity photoluminescence efficiency in solid films, but significantly decreases the energy gap between the lowest singlet and triplet excited states (≈0.3 eV) to induce high‐efficiency TADF even in the NIR region. These organic light‐emitting diodes exhibit external quantum efficiencies of 15.8% for red emission and 14.1% for NIR emission, which represent the best result for NIR organic light‐emitting diodes (OLEDs) based on TADF materials. These findings open a new avenue for the development of high‐efficiency organic emissive materials and devices based on molecular aggregates.  相似文献   

9.
The stabilization and control of the electrical properties in solution‐processed amorphous‐oxide semiconductors (AOSs) is crucial for the realization of cost‐effective, high‐performance, large‐area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS‐based thin‐film transistors (TFTs). In this study, the authors employ a multifunctional organic‐semiconductor (OSC) interlayer as a solution‐processed thin‐film passivation layer and a charge‐transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper‐ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution‐processed organic interlayer enables the production of low‐cost, high‐performance oxide semiconductor‐based circuits.  相似文献   

10.
Organic semiconductors (OSCs) have been widely studied due to their merits such as mechanical flexibility, solution processability, and large‐area fabrication. However, OSC devices still have to overcome contact resistance issues for better performances. Because of the Schottky contact at the metal–OSC interfaces, a non‐ideal transfer curve feature often appears in the low‐drain voltage region. To improve the contact properties of OSCs, there have been several methods reported, including interface treatment by self‐assembled monolayers and introducing charge injection layers. Here, a selective contact doping of 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) by solid‐state diffusion in poly(2,5‐bis(3‐hexadecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT) to enhance carrier injection in bottom‐gate PBTTT organic field‐effect transistors (OFETs) is demonstrated. Furthermore, the effect of post‐doping treatment on diffusion of F4‐TCNQ molecules in order to improve the device stability is investigated. In addition, the application of the doping technique to the low‐voltage operation of PBTTT OFETs with high‐k gate dielectrics demonstrated a potential for designing scalable and low‐power organic devices by utilizing doping of conjugated polymers.  相似文献   

11.
Compared to efficient green and near‐infrared light‐emitting diodes (LEDs), less progress has been made on deep‐blue perovskite LEDs. They suffer from inefficient domain [various number of PbX6? layers (n)] control, resulting in a series of unfavorable issues such as unstable color, multipeak profile, and poor fluorescence yield. Here, a strategy involving a delicate spacer modulation for quasi‐2D perovskite films via an introduction of aromatic polyamine molecules into the perovskite precursor is reported. With low‐dimensional component engineering, the n1 domain, which shows nonradiative recombination and retarded exciton transfer, is significantly suppressed. Also, the n3 domain, which represents the population of emission species, is remarkably increased. The optimized quasi‐2D perovskite film presents blue emission from the n3 domain (peak at 465 nm) with a photoluminescence quantum yield (PLQY) as high as 77%. It enables the corresponding perovskite LEDs to deliver stable deep‐blue emission (CIE (0.145, 0.05)) with an external quantum efficiency (EQE) of 2.6%. The findings in this work provide further understanding on the structural and emission properties of quasi‐2D perovskites, which pave a new route to design deep‐blue‐emissive perovskite materials.  相似文献   

12.
Solution‐based processing of materials for electrical doping of organic semiconductor interfaces is attractive for boosting the efficiency of organic electronic devices with multilayer structures. To simplify this process, self‐doping perylene diimide (PDI)‐based ionene polymers are synthesized, in which the semiconductor PDI components are embedded together with electrolyte dopants in the polymer backbone. Functionality contained within the PDI monomers suppresses their aggregation, affording self‐doping interlayers with controllable thickness when processed from solution into organic photovoltaic devices (OPVs). Optimal results for interfacial self‐doping lead to increased power conversion efficiencies (PCEs) of the fullerene‐based OPVs, from 2.62% to 10.64%, and of the nonfullerene‐based OPVs, from 3.34% to 10.59%. These PDI–ionene interlayers enable chemical and morphological control of interfacial doping and conductivity, demonstrating that the conductive channels are crucial for charge transport in doped organic semiconductor films. Using these novel interlayers with efficient doping and high conductivity, both fullerene‐ and nonfullerene‐based OPVs are achieved with PCEs exceeding 9% over interlayer thicknesses ranging from ≈3 to 40 nm.  相似文献   

13.
Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF‐TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low‐cost and easy‐fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half‐selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm2 V?1 s?1 (average) for 2,6‐diphenylanthracene (DPA) and electron mobility of 0.124 cm2 V?1 s?1 (average) for N ,N ′‐1H,1H‐perfluorobutyl dicyanoperylenecarboxydiimide (PDI‐FCN2) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric‐based pixelated memory module fabrication.  相似文献   

14.
The unique features of the metal–organic frameworks (MOFs), including ultrahigh porosities and surface areas, tunable pores, endow the MOFs with special utilizations as host matrices. In this work, various neutral and ionic guest dye molecules, such as fluorescent brighteners, coumarin derivatives, 4‐(dicyanomethylene)‐2‐methyl‐6‐(p‐dimethylaminostyryl)‐4H‐pyran (DCM), and 4‐(p‐dimethylaminostyryl)‐1‐methylpyridinium (DSM), are encapsulated in a neutral MOF, yielding novel blue‐, green‐, and red‐phosphors, respectively. Furthermore, this study introduces the red‐, green‐, and blue‐emitting dyes into a MOF together for the first time, producing white‐light materials with nearly ideal Commission International ed'Eclairage (CIE) coordinates, high color‐rendering index values (up to 92%) and quantum yields (up to 26%), and moderate correlated color temperature values. The white light is tunable by changing the content or type of the three dye guests, or the excitation wavelength. Significantly, the introduction of blue‐emitting guests in the methodology makes the available MOF host more extensive, and the final white‐light output more tunable and high‐quality. Such strategy can be widely adopted to design and prepare white‐light‐emitting materials.  相似文献   

15.
Despite their merits of environmental friendliness, low cost, and large-scale production, thermally activated delayed fluorescence (TADF) based white organic light-emitting diodes (WOLEDs) for daily lighting applications still face the formidable challenges of structural simplification and controllable exciton allocation. Here, the state-of-the-art full-TADF WOLEDs with features of the single-doped single emissive layers (EMLs) and ultrasimple trilayer structure are demonstrated. The EMLs are binary systems as yellow TADF emitter (4CzTPNBu) doped blue TADF matrix (ptBCzPO2TPTZ) with the large steric hindrance and mismatched frontier molecular orbital energy levels to effectively restrain excessive blue-to-yellow triplet exciton transfer and host-dopant interaction induced triplet quenching. Simultaneously, Förster resonance energy transfer is utilized to optimize exciton allocation for the balance of blue and yellow emissions, giving rise to the photoluminescence quantum yield beyond 90%. Consequently, these single-doped EMLs endow their cool white, pure white, and warm white diodes with the high-quality and ultrastable white light and the 100% exciton utilization efficiencies through the extremely simple structures, making them competent for the diverse daily lighting applications.  相似文献   

16.
A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll‐to‐roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte‐gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution‐processed and where the most common architectures are adopted, are ~10 kΩ·cm for transistors with a field effect mobility in the 0.1–1 cm2/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case‐by‐case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low‐cost, large‐area printed circuits.  相似文献   

17.
Recently, great progress has been made in the device performance of deep blue phosphorescent organic light‐emitting diodes (PHOLEDs) by developing high triplet energy charge‐transport materials, high triplet energy host and deep blue emitting phosphorescent dopant materials. A high quantum efficiency of over 25% and a high power efficiency of over 15 lm/W have already been achieved at 1000 cd m?2 in the deep blue PHOLEDs with a y color coordinate less than 0.20. In this work, recent developments in organic materials for high efficiency deep blue PHOLEDs are reviewed and a future strategy for the development of high efficiency deep blue PHOLEDs is proposed.  相似文献   

18.
Among all typical transition‐metal dichalcogenides (TMDs), the bandgap of α‐MoTe2 is smallest and is close to that of conventional 3D Si. The properties of α‐MoTe2 make it a favorable candidate for future electronic devices. Even though there are a few reports regarding fabrication of complementary metal–oxide‐semiconductor (CMOS) inverters or p–n junction by controlling the charge‐carrier polarity of TMDs, the fabrication process is complicated. Here, a straightforward selective doping technique is demonstrated to fabricate a 2D p–n junction diode and CMOS inverter on a single α‐MoTe2 nanoflake. The n‐doped channel of a single α‐MoTe2 nanoflake is selectively converted to a p‐doped region via laser‐irradiation‐induced MoOx doping. The homogeneous 2D MoTe2 CMOS inverter has a high DC voltage gain of 28, desirable noise margin (NMH = 0.52 VDD, NML = 0.40 VDD), and an AC gain of 4 at 10 kHz. The results show that the doping technique by laser scan can be potentially used for future larger‐scale MoTe2 CMOS circuits.  相似文献   

19.
Redox‐active organic materials have been considered as one of the most promising “green” candidates for aqueous redox flow batteries (RFBs) due to the natural abundance, structural diversity, and high tailorability. However, many reported organic molecules are employed in the anode, and molecules with highly reversible capacity for the cathode are limited. Here, a class of heteroaromatic phenothiazine derivatives is reported as promising positive materials for aqueous RFBs. Among these derivatives, methylene blue (MB) possesses high reversibility with extremely fast redox kinetics (electron‐transfer rate constant of 0.32 cm s?1), excellent stability in both neutral and reduced states, and high solubility in an acetic‐acid–water solvent, leading to a high reversible capacity of ≈71 Ah L?1. Symmetric RFBs based on MB electrolyte demonstrate remarkable stability with no capacity decay over 1200 cycles. Even concentrated MB catholyte (1.5 m ) is still able to deliver stable capacity over hundreds of cycles in a full cell system. The impressive cell performance validates the practicability of MB for large‐scale electrical energy storage.  相似文献   

20.
In this contribution, for the first time, the polarity of fullerene derivatives is tailored to enhance the miscibility between the host and dopant molecules. A fullerene derivative with a hydrophilic triethylene glycol type side chain (PTEG‐1) is used as the host and (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine n ‐DMBI) as the dopant. Thereby, the doping efficiency can be greatly improved to around 18% (<1% for a nonpolar reference sample) with optimized electrical conductivity of 2.05 S cm?1, which represents the best result for solution‐processed fullerene derivatives. An in‐depth microstructural study indicates that the PTEG‐1 molecules readily form layered structures parallel to the substrate after solution processing. The fullerene cage plane is alternated by the triethylene glycol side chain plane; the n ‐DMBI dopants are mainly incorporated in the side chain plane without disturbing the π–π packing of PTEG‐1. This new microstructure, which is rarely observed for codeposited thin films from solution, formed by PTEG‐1 and n ‐DMBI molecules explains the increased miscibility of the host/dopant system at a nanoscale level and the high electrical conductivity. Finally, a power factor of 16.7 µW m?1 K?2 is achieved at 40% dopant concentration. This work introduces a new strategy for improving the conductivity of solution‐processed n‐type organic thermoelectrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号