首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Three nanocrystalline alloys, FesoAlso, Fe42.5Al42.5Ti5B10 and Fe35Al35Ti10B20 (molar fraction, %), were synthesized from elemental powders by high-energy ball milling. The structural evolutions and morphological changes of the milled powders were characterized by X-ray diffractometry(XRD), transmission electron microscopy(TEM) and scanning electron microscopy(SEM). The effects of different Ti, B additions on the structure and phase transformation in these alloys were also discussed. It is observed that the diffusion of AI, Ti, B atoms into Fe lattice occurs during milling, leading to the formation of a BCC phase identified as Fe(Al) or Fe(Al, Ti, B) supersaturated solid solution. Fe-based solid solution with nanocrystalline structure is observed to be present as the only phase in all the alloy compositions after milling. Furthermore, the contents of Ti, B affect the formation of mechanical alloying products, changes in the lattice parameter as well as the grain size.  相似文献   

2.
The microstructures and mechanical properties of Ni-(46-x)Ti-4Al-xZr (x = 0-8, at.%) alloys have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and mechanical tests. The results show that the Ni-Ti-Al-Zr alloys are composed of TiNi and (Ti, Al) 2 Ni with Zr as a solid solution element in both phases, and the third phase, (Zr, Ti, Al) 2 Ni, appears in Ni-40Ti-4Al-6Zr and Ni-38Ti-4Al-8Zr alloys. The compressive yield strength at room temperature increases with the increase of Zr content due to the solid-solution strengthening of Zr and precipitation strengthening of (Ti, Al, Zr) 2 Ni phase. However, the Ni-42Ti-4Al-4Zr alloy exhibits the maximum compressive yield strength at 873 and 973 K because of the softening of (Zr, Ti, Al) 2 Ni phase in the alloys with more Zr addition. The tensile stress-strain tests and the SEM fracture surface observations show that the brittle to ductile transition temperature of Ni-42Ti-4Al-4Zr alloy is between 873 and 923 K.  相似文献   

3.
In this study, vacuum atmosphere. The diffusion bonding of TiAI alloy and Ti3AlC2 ceramic was carried out using Ni foil as interlayer in a interfacial microstructures and the mechanical properties of the diffusion bonded joints were evaluated. Result showed that the interfacial microstructure of the joint from TiAl to Ti3AlC2 side could be divided into Al3NiTi2 , AlNi2 Ti , Ni3 ( Al, Ti) , Ni , Ni3 ( Al , Ti) , Ni ( Al , Ti ) , Ni3Al + TiC~ + Ti3AlC2 , respectively. The shear strength test showed that an average value of 45.9 MPa was achieved. The crack propagated along the interface between TiAl intermetallic and Ni interlayer during the shear test. The mechanisms f or formation of those compound layers during bonding process and the determinant of the fracture location were also discussed.  相似文献   

4.
Two Ti2Ni3Si/NiTi Laves phase alloys with chemical compositions ofNi-39Ti-11Si and Ni-42Ti-8Si (%, mole fraction, the same below), respectively, were fabricated by the laser melting deposition manufacturing process, aiming at studying the effect of Ti, Si contents on microstructure and mechanical properties of the alloys. The Ni-39Ti-llSi alloy consisting of Ti2Ni3Si primary dendrites and Ti2Ni3Si/NiTi eutectic matrix is a conventional hypereutectic Laves phase alloy while the Ni-42Ti-8Si alloy being made up of NiTi primary dendrites uniformly distributed in Ti2Ni3Si/NiTi eutectic is a new hypoeutectic alloy. Mechanical properties of the alloys were investigated by nano-indentation test. The results show that the decrease of Si and the increase of Ti contents change the microstructures of the alloys from hypereutectic to hypoeutectic, which influences the mechanical properties of the alloys remarkably. Corrosion behaviors of the alloys were also evaluated by potentiodynamic anodic polarization curves.  相似文献   

5.
The effects of solution and aging heat treatment on microstructural evolution and room temperature tensile properties for as-forged Ni-45Ti-5Al-2Nb-1Mo alloy were investigated through scanning electron microscopy(SEM),transmission electron microscopy(TEM) and tensile tests.The results show that the microstructure of solution-treated alloy comprises NiTi matrix,Ti2Ni and(Nb,Ti)ss phases.After aging treatment at 700 ℃ for 6 and100 h,the distribution of Ti2Ni and(Nb,Ti)ss precipitates in...  相似文献   

6.
Effect of Cr on high temperature oxidation of TiAl   总被引:1,自引:1,他引:0  
The oxidation behavior of TiAl-Cr(mole fraction of Cr:0-20%) was investigated at 1 173 K in air. The microstructure and composition of the oxide scale were studied by X-ray diffractometry(XRD), scanning electron microscopy(SEM) and electro-probe micro-analyses(EPMA). The results show that with the addition of Cr content from 0 to 8%, the oxidation resistance decreases, especially at 3%, which is mainly attributed to the doping effect of Cr^3+. TiAI-Cr(mole fraction of Cr: 15%-20%) has good oxidation resistance, and the protective alumina layer is preferentially formed on the surface of TiAI alloy, which is due to an increase of mole ratio of Al to Ti in TiAl-Cr alloys.  相似文献   

7.
Nanocrystalline and amorphous Mg2Ni-type(Mg24Ni10Cu2)100–xNdx(x = 0, 5, 10, 15, 20) alloys were prepared by melt-spinning technology. The structures of as-cast and spun alloys were characterised by X-ray diffraction,scanning electron microscopy and transmission electron microscopy. Electrochemical performance of the alloy electrodes was measured using an automatic galvanostatic system. The electrochemical impedance spectra and Tafel polarisation curves of the alloy electrodes were plotted using an electrochemical work station. The hydrogen diffusion coefficients were calculated using the potential step method. Results indicate that all the as-cast alloys present a multiphase structure with Mg2 Ni type as the major phase with Mg6 Ni, Nd5Mg41 and Nd Ni as secondary phases. The secondary phases increased with the increasing Nd content. The as-spun Nd-free alloy exhibited nanocrystalline structure, whereas the as-spun Nd-doped alloys exhibited nanocrystalline and amorphous structures. These results suggest that adding Nd facilitates glass formation of Mg2Ni-type alloys. Melt spinning and Nd addition improved alloy electrochemical performance, which includes discharge potential characteristics, discharge capacity, electrochemical cycle stability and high-rate discharge ability.  相似文献   

8.
Al-5.6Zn-3.0Mg- 1.6Cu- 1.1Li-0.24Cr alloys and Al-8.0Zn-2.4Mg-2.4Cu- 1.1Li-0.18Zr altoys (mass fraction, %) were aged by different processes. The microstructure and mechanical properties were determined by transmission electron microscopy(TEM), tensile test and Vicker's hardness test. The experimental results show that the most signified hardening is obtained by double-ageing or multi-ageing for the Al-Zn-Mg-Cu-Li alloys. The yield strength and the elastic modulus of the Li-containing alloys have relationships with ageing processes. The elastic modulus of Li-containing alloys decreases with the increment of precipitates though it is higher than that of Al-Zn-Mg-Cu alloy.  相似文献   

9.
The diffusion bonding was carried out to join Ti alloy (Ti-6Al-4V) and tin-bronze (ZQSn10-10) with Ni and Ni Cu interlayer. The microstructures of the diffusion bonded joints were analyzed by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that when the interlayer is Ni or Ni Cu transition metals both could effectively prevent the diffusion between Ti and Cu and avoid the formation of the Cu-Ti intermetallic compounds (Cu3Ti, CuTi etc.). But the Ni-Ti intermetallic compounds (NiTi, Ni3Ti) are formed on the Ti-6Al-4V/Ni interface. When the interlayer is Ni, the optimum bonding parameters are 830℃/10 MPa/30min. And when the interlayer is Ni Cu, the optimum bonding parameters are 850℃/10MPa/20min. With the optimum bonding parameters, the tensile strength of the joints with Ni and Ni Cu interlayer both are 155.8MPa, which is 65 percent of the strength of ZQSn10-10 base metal.  相似文献   

10.
Up to now, the aluminide coatings used to protect industrial components at high temperature and corrosive environments have been modified by Pt, Cr, Si and Ni. In this investigation, aluminide coatings were modified by titanium and the microstructural feature and formation mechanism were evaluated. The coatings were formed on a Ni-based superalloy(IN738LC) by a two stage process including titanizing at first and aluminizing thereafter. Pack cementation titanizing performed at temperatures 950℃ and 1050℃ in several mixtures of Ti, Al2O3 and NH4Cl. At the second stage,aluminum diffused into surface of the specimens by an industrial aluminizing process known as Elcoatl01(4 hrs at 1050℃). The modified coatings were characterized by means of standard optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and X-Ray diffraction methods. The results show that Ti in the coatings is mainly present in the form of TiNi and A167CrsTias. Titanium modified coatings grew with a mechanism similar to simple aluminizing; this includes inward diffusion of A1 from the pack to the substrate and then outward diffusion of Ni from the substrate to the coating. The advantages and characteristics of this two-stage modified coating is discussed and the process parameters are proposed to obtain a coating of optimum microstructure.  相似文献   

11.
R-phase transformation of aged Ti-Ni shape memory alloy   总被引:1,自引:0,他引:1  
Ti-50.6Ni(molar fraction, %) shape memory alloy solution treated at 850 ℃ for lh followed by ageing treatment at 450 ℃ for 3 h was studied with differential scanning calorimetry(DSC), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). DSC measurement reveals two separate transformation peaks. XRD and TEM demonstrate that a three-stage transformation occurs. The Ti3 Ni4 precipitates are coherent with the R- phase. The crystal structure of R-phase was analyzed by two diffraction patterns method. The diffraction patterns of R-phase were obtained in detail from the same region.  相似文献   

12.
A little amount of aluminum substituting for Ni was added to Ti50Ni48Fe2 and Ti50Ni47.5Fe2.5 alloys to improve the mechanical properties, especially the yield stress of the TiNiFe alloys. The martensitic transformation temperature and mechanical properties of Ti50Ni48-xFe2Alx and Ti50Ni47.5-xFe2.5Alx (x=0, 0.5, 1) alloys were examined, and it was revealed that 0.5% and 1%(mole fraction) aluminum addition lead to about 10℃ and 60-80℃ martensitic transformation temperature (Ms) decrease, respectively, 1%(mole fraction) aluminum addition enhances remarkably the yield stresses of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 to 560 and 580 MPa, respectively. The systemic microstructure analysis indicates that the second phase Ti2Ni at the grain boundaries plays an important role in improving the mechanical properties of TiNiFe shape memory alloys.  相似文献   

13.
Three kinds of Al-Zn-Mg-Cu based alloys with 0.22%, 0.36%(Sc+Zr) (mass fraction, %), and without Sc, Zr addition were prepared by ingot metallurgy. By using optical microscopy, transmission electronic microscopy and scanning electron microscopy, the effects of microalloying elements of Sc, Zr on the microstructure of super-high-strength Al-Zn-Mg-Cu alloys related to mechanical properties were investigated. The tensile properties and microstructures of the studied alloys under different heat treatment conditions were studied. The addition of minor Sc, Zr results in the formation of Ala(Sc,Zr) particles. These particles are highly effective in refining the microstructures, retarding recrystallization, pinning dislocations and subboundaries. The strength of Al-Zn-Mg-Cu alloys was greatly improved by simultaneously adding minor Sc, Zr, meanwhile the ductility of the studied alloys remains at a higher level. The 0.36%(Sc+Zr) alloys gain the optimal properties after 465 ℃/h solution and 120 ℃/24 h aging. The increment of strength is mainly due to strengthening of fine grain and substructure and precipitation ofAl3(Sc, Zr) particles.  相似文献   

14.
The energetic, electronic structure and elastic property offl-type Ti-Xx (X=Nb and Mo, x=0.041 7, 0.062 5, 0.125 0, 0.187 5, 0.250 0, 0.312 5 and 0.375) binary alloys were calculated by the method of supercell and augmented plane waves plus local orbitals within generalized gradient approximation. The elastic moduli of the polycrystals for these Ti1-xXx alloys were calculated from the elastic constants of the single crystal by the Voigt-Reuss-Hill averaging method. Based on the calculated results, the influence of X content on the phase stability and elastic property offl-type Ti1-xXx alloys was investigated. The results show that the phase stability, tetragonal shear constant C, bulk modulus, elastic modulus and shear modulus offl-type Ti1-xXx alloys increase with an increase of X content monotonously. When the valence electron number offl-type Ti1-xXx alloys is around 4.10, i.e. the content of Nb is 9.87% (molar fraction) in the Ti-Nb alloy and Mo is 4.77% (molar fraction) in Ti-Mo alloy, the tetragonal shear constant is nearly zero. The Ti1-xXx alloys achieve low phase stability and low elastic modulus when the tetragonal shear constant reaches nearly zero. In addition, the phase stability offl-type Ti1-xXx alloys was discussed together with the calculated electronic structure.  相似文献   

15.
The oxidation behavior of NiTi and NiTiNb alloys containing different amounts of Nb (7%, 9%, mole fraction) were studied at 800℃ in air. It is found that the oxidation resistance of NiTi alloy can be effectively increased by the Nb addition. Under the same oxidation condition, the mass gain of NiTi is about 7 mg/cm^2, while the inass gains are only 3 mg/cm^2 for Ni47Ti44Nb9 alloy and 2.4 mg/cm^2 for Ni52Ti41NbT. Moreover the oxidation resistance of single phase NiTiNb alloy is better than that of the dual-phase alloy with large amount of Nb precipitates. On the basis of thermodynamics and kinetics of oxidation, the effect of Nb alloying element on the oxidation behavior of NiTi-based alloys was discussed.  相似文献   

16.
In order to obtain more accurate density for molten Ni-(Cr, Co, W) binary alloy, the densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys were measured with a sessile drop method. It is found that the measured densities of molten pure Ni and Ni-Cr, Ni-Co, Ni-W alloys decrease with increasing temperature in the experimental temperature range. The density of alloys increases with increasing W and Co concentrations while it decreases with increasing Cr concentration in the alloy at 1 773-1 873 K. The molar volume of Ni-based alloys increases with increasing W concentration while it decreases with increasing Co concentration. The effect of Cr concentration on the molar volume of the alloy is little in the studied concentration range. The accommodation among atomic species was analyzed. The deviation of molar volume from ideal mixing shows an ideal mixing of Ni-(Cr, Co, W) binary alloys.  相似文献   

17.
The microstructural evolution of Ni–42Ti–7Al and Ni–41Ti–7Al alloys as a function of solution and aging heat treatment was investigated using transmission electron microscopy(TEM), electron probe, and X-ray diffraction(XRD). The results reveal that the volume fraction of Ti2 Ni phase as well as its composition does not change significantly after as-solution treated at 1200 °C and aged at 850 °C. At the early stage of the aging treatment at 850 °C for 1 h, the cuboidal β' precipitate keeps coherency with the matrix; further aging, β' precipitate coarsens, and the semicoherency between the β/β' two phases are observed.The shape of coarsened β' precipitates changes to the globule, and the interface dislocations are introduced accompanied by the occurrence of semicoherent precipitates. Under the same heat treatment, compared to the Ni–42Ti–7Al alloy, the lattice misfits of the Ni–41Ti–7Al alloy between the β and β' two phases are larger, so the β' precipitates in Ni–41Ti–7Al alloy are coarsened severely and easily lose coherency with the matrix. The thermal stability of Ni–41Ti–7Al alloy is much worse when aging at 850 °C.  相似文献   

18.
The effects of Hg and Ga on the electrochemical corrosion behavior of Mg-5%Hg (molar fraction) alloys were investigated by the measurement of polarization curves and galvanostatic test. The microstructure of the alloys and the corroded surface of the specimens were investigated by scanning electron microscopy, X-ray diffractometry and emission spectrum analysis. It can be concluded that the addition of l%Ga (molar fraction) reduces corrosion current density from 26.98 mA/cm^2 to 2.34 mA/cm^2; while the addition of l%Hg (molar fraction) increases corrosion current density. The addition of Ga and Hg both promotes the electrochemical activity of the alloys and the influence of Ga is more effective than Hg. Mg-5%Hg-l%Ga alloy has the best electrochemical activity, showing mean potential of-1.992 V. The activation mechanism of the magnesium alloy produced by Hg and Ga was put forward. Magnesium atoms are dissolved in liquid Hg and Ga to form amalgam and undergo severe oxidation at the amalgam/electrolyte interface.  相似文献   

19.
The microstructures of Ti6A14V alloy after hydrogenation were investigated by optical microscopy(OM), X-ray diffraction(XRD) and transmission electron microscopy(TEM). The influence of hydrogenation on the hardness of α and β phases was analysed by microhardness testing. The influence of hydrogenation on alloying elements diffusion was studied by electron probe microanalysis(EPMA). The microstructural observation reveals that hydride δ (FCC structure) as well as large number of dislocations precipitate in the specimens with 0.278% and 0.514% hydrogen, and a lot of twins are found in the specimen with 0.514% hydrogen, simultaneously. The result of microhardness testing shows that the hardness of a and β phases increases synchronously with the increase of hydrogen and the hardness increment of β is larger than that of a. According to analysis of EPMA, the diffusion ability of alloy elements Al and V increases after hydrogenation. It is considered that hydrogen solution strengthening and V element diffusion are the main factors causing the hardness of a phase increase with the increase of hydrogen, and the formation of δ hydrides, lattice defects, hydrogen solution strengthening and Al element diffusion jointly cause the hardness of β phase increase with the increasing hydrogen.  相似文献   

20.
FeCox NiCuAl (x values in molar ratio, x=0.2, 0.5, 1, 1.5, 2 and 3) alloys were prepared using a suck-casting method. The effect of Co element on phase constituents, microstructure and mechanical properties of the FeCox NiCuAl alloys was investigated using X-ray diffraction, scanning electron microscopy, optical microscopy and compressive tests. It was found that the Co addition has a significant influence on the structure and properties of the FeCox NiCuAl alloys. The alloys have typical dendrite microstructure, and are composed of a simple fcc structure and bcc structure. The addition of Co promotes the formation of fcc phase in the alloys, retards the compressive strength and hardness of the alloys, and enhances the plasticity of the alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号