首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The performance of an ultra-compact biofilm reactor (UCBR) treating domestic wastewater (DWW) collected from a local water reclamation plant; and gradually shifting to a mono-type carbon source synthetic wastewater (SWW) combined with DDW (CWW) and finally SWW; was investigated in this study. The total COD concentrations of influent DWW and CWW/SWW were 413.6 ± 80.8 mg/L and 454.9 ± 51.3 mg/L, respectively. The UCBR was able to achieve average total COD removal efficiencies of 70 ± 10% and 80 ± 4% for DWW and SWW respectively. The total COD concentrations of the effluent of DWW and CWW/SWW were 122.5 ± 44.4 mg/L and 89.7 ± 10.3 mg/L, respectively. These observations suggested that heterotrophs in the UCBR system were able to better assimilate and remove carbon of mono-type SWW compared to diverse carbon sources such as DWW; although the influent soluble COD concentrations of the SWW were higher than those of the DWW. However, the effluent NH(4)(+)-N concentrations for both types of wastewater were rather similar, <3.0 mg/L; although the influent NH(4)(+)-N concentrations of the DWW were 1.5 times those of the SWW.  相似文献   

2.
A novel technology suitable for centralised and decentralised wastewater treatment has been developed, extensively tested at laboratory-scale, and trialled at a number of sites for populations ranging from 15 to 400 population equivalents (PE). The two-reactor-tank pumped flow biofilm reactor (PFBR) is characterised by: (i) its simple construction; (ii) its ease of operation and maintenance; (iii) low operating costs; (iv) low sludge production; and (v) comprising no moving parts or compressors, other than hydraulic pumps. By operating the system in a sequencing batch biofilm reactor (SBBR) mode, the following treatment can be achieved: 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS) reduction; nitrification and denitrification. During a 100-day full-scale plant study treating municipal wastewater and operating at 165 PE and 200 PE (Experiments 1 and 2, respectively), maximum average removals of 94% BOD5, 86% TSS and 80% ammonium-nitrogen (NH4-N) were achieved. During the latter part of Experiment 2, effluent concentrations averaged: 14 mg BOD5/l; 32 mg COD(filtered)/l; 14 mg TSS/l; 4.4 mg NH4-N/l; and 4.0 mg NO3-N/l (nitrate-nitrogen). The average energy consumption was 0.46-0.63 kWh/m3(treated) or 1.25-1.76 kWh/kg BOD5 removed. No maintenance was required during these experiments. The PFBR technology offers a low energy, minimal maintenance technology for the treatment of municipal wastewater.  相似文献   

3.
Many exciting new technologies for water-quality control combine microbiological processes with adsorption, advanced oxidation, a membrane or an electrode to improve performance, address emerging contaminants or capture renewable energy. An excellent example is the H2-based membrane biofilm reactor (MBfR), which delivers H2 gas to a biofilm that naturally accumulates on the outer surface of a bubbleless membrane. Autotrophic bacteria in the biofilm oxidise the H2 and use the electrons to reduce NO3-, CIO4- and other oxidised contaminants. This natural partnership of membranes and biofilm makes it possible to gain many cost, performance and simplicity advantages from using H2 as the electron donor for microbially catalysed reductions. The MBfR has been demonstrated for denitrification in drinking water; reduction of perchlorate in groundwater; reduction of selenate, chromate, trichloroethene and other emerging contaminants; advanced N removal in wastewater treatment and autotrophic total-N removal.  相似文献   

4.
The treatment performance of a maturation pond (MP), the typical final polishing stage of an Advanced Pond System (APS), is compared with that of a surface-flow constructed wetland (CW) over 19 months. Both received approximately 67 mm d-1 of wastewater after passage through upstream stages of the APS. The MP, with greater sunlight exposure, had higher algal biomass (and associated suspended solids) than the CW, showed higher dissolved oxygen (DO) concentrations and greater diurnal variation in DO and pH. Neither polishing stages reduced nutrients markedly, with the CW exporting slightly more NH(3)-N and DRP, and less NO(3)-N than the MP. Disinfection was more efficient in the MP (geometric mean 1 log load removal, 12 MPN (100ml)-1) compared to the CW (0.47 log load removal, 53 MPN (100ml)-1). Incorporation of a final rock filter (28% of area) reduced median solids levels to < 10 g m(-3) in both the MP and CW. A hybrid between MPs and CWs with alternating zones of open-water (for enhanced disinfection and zooplankton grazing of algal solids) and wetland vegetation (promoting sedimentation and denitrification, and providing refugia for zooplankton) may provide more consistent effluent quality that either stage alone.  相似文献   

5.
In this work the anaerobic monodigestion for the treatment of turkey manure was evaluated, without its codigestion with another substrate. The effect of the organic loading rate (OLR) and the substrate concentration (high total solids (TS) concentration) or product concentration (high volatile fatty acids (VFA) and/or ammonia (NH(3)-N) concentrations) was studied. The results show that for a continuous stirred tank reactor (CSTR) operation, a maximum of 40 g/L of TS and 4.0 g/L of ammonium (NH(4)(+)) was required. In addition, the maximum organic loading rate (OLR) will not exceed 1.5 kg VS/m(3)d. Higher TS and NH(4)(+) concentrations and OLR lead to a reduction on the methane productivity and volatile solids (VS) removal. During the CSTR operation, a high alkalinity concentration (above 10 g/L CaCO(3)) was found; this situation allowed maintaining a constant and appropriate pH (close to 7.8), despite the VFA accumulation. In this sense, the alkalinity ratio (α) is a more appropriate control and monitoring parameter of the reactor operation compared to pH. Additionally, with this parameter a VS removal of 80% with a methane productivity of 0.50 m(3)(CH4)/m(3)(R)d is achieved.  相似文献   

6.
Pumped flow biofilm reactors (PFBR) for treating municipal wastewater   总被引:1,自引:0,他引:1  
A novel laboratory bench-scale sequencing batch biofilm reactor (SBBR) system was developed for the treatment of synthetic domestic strength wastewater, comprising two side-by-side 18 l reactor tanks, each containing a plastic biofilm media module. Aerobic and anoxic conditions in the biofilms were effected by intermittent alternate pumping of wastewater between the two reactors. With a media surface area loading rate of 4.2 g chemical oxygen demand (COD)/m2.d, the average influent COD, total nitrogen (TN) and ammonium-nitrogen (NH4-N) concentrations of 1021 mg/l, 97 mg/l and 54 mg/l, respectively, reduced to average effluent concentrations of 72 mg COD/l, 17.8 mg TN/l, and 5.5 mg NH4-N /l. Using a similar alternating biofilm exposure arrangement, a 16 person equivalent pilot (PE) plant was constructed at a local village treatment works to remove organic carbon from highly variable settled municipal wastewater and comprised two reactors, one positioned above the other, each containing a module of cross-flow plastic media with a surface area of 100 m2. Two different pumping sequences (PS) in the aerobic phase were examined where the average influent COD concentrations were 220 and 237 mg/l for PS1 and PS2, respectively, and the final average effluent COD was consistently less than 125 mg/l--the European Urban Wastewater Treatment Directive limit--with the best performance occurring in PS1. Nitrification was evident during both PS1 and PS2 studies. A 300 PE package treatment plant was designed based on the bench-scale and pilot-scale studies, located at a local wastewater treatment works and treated municipal influent with average COD, suspended solids (SS) and TN concentrations of 295, 183 and 15 mg/l, respectively resulting in average effluent concentrations of 67 mg COD/l, 17 mg SS/l and 9 mg TN/l. The SBBR systems performed well, and were simple to construct and operate.  相似文献   

7.
A steady-state implementation of the IWA Anaerobic Digestion Model No. 1 (ADM1) has been applied to the anaerobic digesters in two wastewater treatment plants. The two plants have a wastewater treatment capacity of 76,000 and 820,000 m3/day, respectively, with approximately 12 and 205 dry metric tons sludge fed to digesters per day. The main purpose of this study is to compare the ADM1 model results with full-scale anaerobic digestion performance. For both plants, the prediction of the steady-state ADM1 implementation using the suggested physico-chemical and biochemical parameter values was able to reflect the results from the actual digester operations to a reasonable degree of accuracy on all parameters. The predicted total solids (TS) and volatile solids (VS) concentration in the digested biosolids, as well as the digester volatile solids destruction (VSD), biogas production and biogas yield are within 10% of the actual digester data. This study demonstrated that the ADM1 is a powerful tool for predicting the steady-state behaviour of anaerobic digesters treating sewage sludges. In addition, it showed that the use of a whole wastewater treatment plant simulator for fractionating the digester influent into the ADM1 input parameters was successful.  相似文献   

8.
Three parallel biological anoxic filters (BaFs) were operated to investigate the denitrification kinetics of methanol, brewery wastewater and bakery wastewater. The experiment was conducted within the temperature range of 15-20 °C, with an influent nitrate and carbon dosage of 30 mg/L and 150 mg COD/L (COD: chemical oxygen demand). The denitrification efficiencies of brewery wastewater, bakery wastewater and methanol were 84, 66 and 74%, specific denitrification rates were 1.44, 1.11 and 1.24 kg NO(3)-N/m(3) d, and total nitrogen (TN) removal rates were 74, 62 and 66%, respectively. The volatile attached solid (VAS) tests reveal that methanol has the minimum net biomass yield, so it needs the least carbon to nitrogen (expressed in COD to nitrate, C/N) ratio for complete denitrification. While the brewery wastewater and bakery wastewater need higher C/N ratio to remove all nitrate nitrogen, and they both may need pretreatment to remove phosphate when used as external carbon sources.  相似文献   

9.
This work deals with the methodology put in place to fit and validate the parameters of a biofiltration model (BAF) in tertiary nitrification treatment and dynamic conditions. For an average loading rate of 0.65 kg NH4-N/m(3) media/d, different time loading rates are applied inside a filtration-backwash run using a semi-industrial pilot. Comparisons between predicted and observed values on the NH4-N, NO3-N and TSS in treated water and the total head loss deltaP are carried out firstly using default values of BAF parameters. Model predictions overestimate values measured but trends are well reproduced. A sensitivity analysis is carried out and the hierarchy of BAF parameters has been set up classifying them into strong and low influence on the effluent concentrations. Among parameters revealing the strongest influence are those of the filtration module and the mean density of biofilm for the TSS effluent and the total AP, the specific autotrophic growth rate, the maximum biofilm thickness and the reduction coefficient of diffusivity in the biofilm for the NH4-N, NO3-N effluent. Finally, this classification leads to setting a calibration procedure, thanks to specific experimental tests directly measuring some BAF parameters.  相似文献   

10.
This paper describes changes in effluent quality occurring before and after an upgrade to the Bolivar Wastewater Treatment Plant in South Australia. Trickling filters (TF) were replaced with an activated sludge (AS) plant, prior to tertiary treatment using waste stabilisation ponds (WSPs). The water quality in the WSPs following the upgrade was significantly improved. Reductions in total and soluble BOD, COD, TKN, suspended solids and organic nitrogen were recorded and the predominant form of inorganic nitrogen changed from NH(4)-N to NO(2)/NO(3)-N. The reduction in ammonium and potentially toxic free ammonia removed a control upon the growth of zooplankton, which may have contributed to decreases in algal biomass in the final ponds and consequently lower dissolved oxygen. Additionally, changes in inorganic nitrogen speciation contributed to a slightly elevated pH which reduced numbers of faecal coliforms in WSPs. The AS pretreated influent recorded significantly lower inorganic molar N:P ratio (10-4:1) compared to those fed with TF effluent (17-13:1). Algae within the WSPs may now be nitrogen limited, a condition which may favour the growth of nitrogen-fixing cyanobacteria. The decrease in algal biomass and in dissolved oxygen levels may enhance sedimentary denitrification, further driving the system towards nitrogen limitation.  相似文献   

11.
An activated sludge/biofilm hybrid process treating municipal wastewater was studied in pilot plant trials. A new type of suspended carrier, with large effective surface area, was employed in the process with the aim of enhancing nitrification. The pilot plant was operated for 1.5 years in five different configurations including pre-denitrification in all five and enhanced biological phosphorus removal in the final two. The wastewater temperature ranged between 11 degrees C and 20 degrees C, and the nominal dissolved oxygen (DO) level was 5-6 mg/L. The nitrification rate obtained on the new carrier within the hybrid stage was in the range of 0.9-1.2 g NH4-N/m2/d corresponding to a volumetric rate of 19-23 g NH4-N/m3/h (total nitrification including nitrification in the suspended solids). More than 80% of the total nitrification took place on the carrier (and the remainder in the suspended solids). The nitrification rate was shown to correlate with DO, decreasing when the DO was decreased. The results supported the idea of using the new carrier as a tool to upgrade plants not having nitrification today or improve nitrification in activated sludge processes not reaching necessary discharge levels. The large surface area present for nitrification makes it possible to obtain high nitrification rates within limited volumes. The possibility to keep the total suspended solid content low (< 3 g/L) and avoiding problems with the filament Microthrix parvicella, are other beneficial properties of the hybrid process.  相似文献   

12.
Many small-size wastewater treatment plants in Korea's rural communities are designed to remove organic and suspended matter only, and they generally show a large fluctuation in the influent loading compared to municipal wastewater treatment plants (MWWTPs). They also have no professional engineers stationed for efficient operation against mechanical breakdown. For those reasons, the wastewater treatment plants have low efficiency in treatment of nitrogen and phosphorus as well as organic matter. In order to solve those problems, this study developed an automatic control system and RMS (remote monitoring system), which can keep efficiency stable despite any change in the small plants' loading rates and are capable of removing nutrient materials such as nitrogen or phosphorus. According to the results of the Experimental SBR system of the automatic control program, complete nitrification was made under oxic conditions and denitrification occurred as NO3-N concentration decreased by 0.5 mg/l in anoxic conditions and excellent nitrogen removal efficiency was seen generally. The Experimental SBR system created "phosphate release and uptake" effectively and displayed phosphate-removing efficiency up to more than 80% as the concentration of effluent was kept low by 0.4 mg/l. RMS developed in this study transmits a plant's data and operation states to clients in remote locations in real-time interval through the Internet. Therefore, although you are in a remote location, it allows you to see if a plant is properly operated or there is any breakdown.  相似文献   

13.
In this study, four similar bench-scale submerged Anoxic/Oxic Membrane Bioreactors (MBR) were used simultaneously to investigate the effects of solids retention time (SRT) on organic and nitrogen removal in MBR for treating domestic wastewater. COD removal efficiencies in all reactors were consistently above 94% under steady state conditions. Complete conversion of NH(4+)-N to NO(3-)-N was readily achieved over a feed NH(4+)-N concentration range of 30 to 50 mg/L. It was also observed that SRT did not significantly affect the nitrification in the MBR systems investigated. The average denitrification efficiencies for the 3, 5, 10 and 20 days SRT operations were 43.9, 32.6, 47.5 and 66.5%, respectively. In general, the average effluent nitrogen concentrations, which were mainly nitrate, were about 22.2, 27.6, 21.7 and 13.9 mg/L for the 3, 5, 10 and 20 days SRT systems, respectively. The rate of membrane fouling at 3 days SRT operation was more rapid than that observed at 5 days SRT. No fouling was noted in the 10 days and 20 days SRT systems during the entire period of study.  相似文献   

14.
Nitrate and pesticide contaminated ground- and surface-waters have been found around the world as a result of the use of these compounds in agricultural activities. In this study we investigated a biological treatment method to simultaneously remove nitrate and pesticides from contaminated water. Methane was supplied as the sole source of carbon to the microbial culture. A methane-fed membrane biofilm reactor (M-MBfR) was developed in which the methane was supplied through hollow-fiber membranes to a biofilm growing on the membrane surface. A methane-oxidizing culture enriched from activated sludge was used as inoculum for the experiments. Removal of nitrate and the four pesticides atrazine, aldicarb, alachlor, and malathion was examined both in suspended culture and in the M-MBfR. The maximum denitrification rate with suspended culture was 36.8 mg N gVSS(-1) d(-1). With the M-MBfR setup, a hydraulic retention time of approximately one hour was required to completely remove an incoming nitrate concentration of about 20 mg NO3-N l(-1). The microbial culture could remove three of the pesticides (aldicarb, alachlor, and malathion). However, no atrazine removal was observed. The removal rates of both nitrate and pesticides were similar in suspended culture and in membrane-attached biofilm.  相似文献   

15.
Wastewater from seafood industry contains high concentrations of organic matter, nitrogen compounds, and solid matter. Constructed wetland can be used as tertiary treatment and for nutrient recycling. This research studied the performance of nitrogen and suspended solids removal efficiency of a constructed wetland treating wastewater from a seafood-processing factory located at Songkhla, southern Thailand. The existing constructed wetland has dimensions of 85 m, 352 m and 1.5 m in width, length and depth respectively, with an area of about 29,920 m2. The water depth of 0.30 m is maintained in operation with plantation of cattails (Typha augustifolia). Flow rate of influent ranged between 500-4,660 m3/d. Average hydraulic retention time in the constructed wetland was about 4.8 days. Influent and effluent from the constructed wetland were collected once a week and analyzed for pH, temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD5), Suspended solid (SS), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), organic nitrogen (Org-N), nitrate (NO3-N), and nitrite (NO2-N). The average removal efficiencies of BOD5, SS, TKN, NH3-N, and Org-N were 84%, 94%, 49%, 52% and 82%, respectively. It was found that the constructed wetland acting as a tertiary treatment process provided additional removal of BOD5, SS and TKN from wastewater from the seafood industry.  相似文献   

16.
Nitrogen removal in piggery waste was investigated with the combined SHARON-ANAMMOX process. The piggery waste was characterized as strong nitrogenous wastewater with very low C/N ratio. For the preceding SHARON reactor, ammonium nitrogen loading and conversion rates were 0.97 kg NH4-N/m3 reactor/day and 0.73 kg NH4-N/m3 reactor/day, respectively. Alkalinity consumption for ammonium conversion was 8.5 gr bicarbonate utilized per gram ammonium nitrogen converted to NO2-N or NO3-N at steady-states operation. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. Nitrogen loading and conversion rates were 1.36 kg soluble N/m3 reactor/day and 0.72 kg soluble N/m3 reactor/day, respectively. The average NO2-N/NH4-N removal ratio by ANAMMOX reaction was 2.13. It has been observed that Candidatus "Kuenenia stuttgartiensis" were dominated in the ANAMMOX reactor based on FISH analysis.  相似文献   

17.
To enhance the efficiency of nitrate removal from synthetic groundwater, wheat rice stone (WRS) and granular activated carbon (GAC) were employed as biofilm carriers for denitrification under different HRT (hydraulic retention time) and C/N ratios. Four different ratios of GAC to WRS (0, 0.5, 1.0, and 2.0) were investigated to determine the most appropriate ratio of GAC and WRS. The NO(3)(-)-N, NO(2)(-)-N, COD levels and pH of the effluent were also investigated under various HRT and C/N ratios. The results showed that the column at a GAC/WRS ratio of 1.0 performed best under a C/N ratio of 0.9 and an HRT of 8 h, with 99% nitrate being removed. In addition, little nitrite accumulation and chemical oxygen demand (COD) were observed in effluent under these conditions. These results demonstrated that, with no addition of phosphor in the influent, the nitrate removal efficiency can be enhanced by WRS because WRS can leach trace elements and phosphor to promote the growth of bacteria.  相似文献   

18.
Subsurface flow wetlands contain gravel or sand substrates through which the wastewater flows vertically or horizontally. The aims of this study were, firstly, to quantify biofilm development associated with different size gravel in sections of a subsurface flow wetland with and without plants, and secondly, to conduct laboratory experiments to examine the role of biofilms in nutrient removal. Techniques to quantify biofilm included: bacterial cell counts, EPS and total protein extraction. Based on comparative gravel sample volume, only EPS was greater on the smaller 5 mm gravel particles. There was no significant difference between biofilm growth in sections with and without plants. Two vertical flow laboratory-scale reactors, one containing fresh wetland gravel, the other containing autoclaved gravel, were constructed to determine nutrient transformations. The autoclaved gravel in the "sterile" reactor rapidly became colonised with biofilm. Both reactors were dosed with two types of influent. Initially the influent contained 7.25 mg/L NO3-N and 0.3 mg/L NH4-N; the biofilm reactor removed most of the ammonium and nitrite but nitrate concentrations were only reduced by 20%. In the "sterile" reactor there was negligible removal of ammonium and nitrite indicating little nitrification, however nitrate was reduced by 72%, possibly due to assimilatory nitrate reduction associated with new biofilm development. When the influent contained 3 mg/L NO3-N and 16 mg/L NH4-N almost 100% removal and transformation of NH4-N occurred in both reactors providing an effluent high in NO3-N. Organic P was reduced but inorganic soluble P increased possibly due to mineralisation.  相似文献   

19.
The aim of this study was to examine the relationship between ammonia oxidizing bacterial populations and biological nitrogen removal in a small on-site domestic wastewater treatment system "Johkasou". The population dynamics of ammonia oxidizing bacteria (AOB) in six full-scale advanced Johkasous was surveyed using real-time PCR assay over a period of one year. These Johkasous were selected to compare the AOB populations in different treatment performance. When the effluent NH4-N concentration was higher than 2 mg L(-1), it was difficult to meet the effluent standard of advanced Johkasous (T-N 10 mg L(-1)). In contrast, the nitrogen removal efficiency was hardly affected by nitrite oxidation and denitrification in these systems. In other words, ammonia oxidation was a rate-limiting step. Furthermore, we focused on the relationship between NH4-N loading per AOB cell and nitrogen removal. Real time PCR monitoring results demonstrated that it is important to regulate NH4-N loading per AOB cell below 210 pg cell(-1) day(-1) to meet the effluent standard of advanced Johkasou. It is considered that NH4-N loading per AOB cell is a useful parameter for determining suitable nitrogen loading and small decentralized system design.  相似文献   

20.
Innovations in wastewater treatment: the moving bed biofilm process.   总被引:3,自引:0,他引:3  
This paper describes the moving bed biofilm reactor (MBBR) and presents applications of wastewater treatment processes in which this reactor is used. The MBBR processes have been extensively used for BOD/COD-removal, as well as for nitrification and denitrification in municipal and industrial wastewater treatment. This paper focuses on the municipal applications. The most frequent process combinations are presented and discussed. Basic design data obtained through research, as well as data from practical operation of various plants, are presented. It is demonstrated that the MBBR may be used in an extremely compact high-rate process (<1 h total HRT) for secondary treatment. Most European plants require P-removal and performance data from plants combining MBBR and chemical precipitation is presented. Likewise, data from plants in Italy and Switzerland that are implementing nitrification in addition to secondary treatment are presented. The results from three Norwegian plants that are using the so-called combined denitrification MBBR process are discussed. Nitrification rates as high as 1.2 g NH4-N/m2 d at complete nitrification were demonstrated in practical operation at low temperatures (11 degrees C), while denitrification rates were as high as 3.5g NO3-Nequiv./m2.d. Depending on the extent of pretreatment, the total HRT of the MBBR for N-removal will be in the range of 3 to 5 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号