首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
The effect of 0.2 to 0.8 at.% rare-earth ions on the conductivity of melt-grown BaTiO3 crystals was studied by optical absorption, luminescence, Hall coefficient, and electrical conductivity measurements. The conductivity is proportional to the dopant concentration in these crystals; such is not the case in BaTiO3 ceramics. A rare-earth ion substitutes on the Ba2+ site and yields a donor.  相似文献   

2.
The solid solubility of R ions (R = Ho3+, Dy3+, and Y3+) in the BaTiO3 perovskite structure was studied by quantitative electron-probe microanalysis (EPMA) using wavelength-dispersive spectroscopy (WDS), scanning electron microscopy (SEM), and X-ray diffractometry (XRD). Highly doped BaTiO3 samples were prepared using mixed-oxide technology including equilibration at 1400° and 1500°C in ambient air. The solubility was found to depend mainly on the starting composition. In the TiO2-rich samples a relatively low concentration of R incorporated preferentially at the Ba2+ lattice sites (solubility limit ∼Ba0.986R0.014Ti0.9965(V"Ti")0.0035O3at 1400°C). In BaO-rich samples a high concentration of R entered the BaTiO3 structure at the Ti4+ lattice sites (solubility limit ∼BaTi0.85R0.15O2.925(VO••)0.075at 1500°C). Ho3+, Dy3+, and Y3+incorporated preferentially at the Ti4+ lattice sites stabilize the hexagonal polymorph of BaTiO3. The phase equilibria of the Ho3+–BaTiO3 solid solutions were presented in a BaO–Ho2O3–TiO2phase diagram.  相似文献   

3.
In this article, ytterbium and erbium oxides are used as doping materials for barium titanate (BaTiO3) materials. The amphoteric behavior of these rare-earth ions leads to the increase of dielectric permittivity and decrease of dielectric losses. BaTiO3 ceramics doped with 0.01–0.5 wt% of Yb2O3 and Er2O3 were prepared by conventional solid-state procedure and sintered at 1320°C for 4 h. In BaTiO3 doped with a low content of rare-earth ions (0.01 wt%) the grain size ranged between 10 and 25 μm. With the higher dopant concentration of 0.5 wt%, the abnormal grain growth is inhibited and the grain size ranged between 2 and 10 μm. The measurements of capacitance and dielectric losses as a function of frequency and temperature have been carried out in order to correlate the microstructure and dielectric properties of doped BaTiO3 ceramics. The temperature dependence of the dielectric constant as a function of dopant amount has been investigated.  相似文献   

4.
Thin films of cubic BaTiO3 were processed hydrothermally at 40°–80°C by reacting thin layers of titanium organo metallic liquid precursors in aqueous solutions of either Ba(OH)2 or a mixture of NaOH and BaCl2. All films (thickness ∼1 μm) were polycrystalline with grain sizes ranging from nano- to micrometer dimensions. BaTiO3 formation was facilitated by increasing [OH-], [Ba2+], and the temperature. The film structure was related to the nucleation and growth behavior of the BaTiO3 particles. Films processed at relatively low [OH-], [Ba2+], and temperatures were coarse grain and opaque, but increasing [OH-], [Ba2+], and temperature caused the grain size to decrease, resulting in transparent films.  相似文献   

5.
Micron-scale platelet barium titanate was synthesized using a twostep molten salt and topochemical technique. Plate-like BaBi4Ti4O15 was first synthesized as a precursor by molten salt synthesis. Then, Bi3+ in the precursor was replaced by Ba2+ and formed perovskite-structure BaTiO3 through a topochemical reaction. The BaTiO3 single crystals have an average size of 5–10 μm and a thickness of 0.5 μm. The purpose of this article is to control the particle shape with desired structure. High aspect ratio BaTiO3 platelets are suitable templates to obtain textured ceramics (especially Pb(Mg1/3Nb2/3)O3–32.5PbTiO3) by the templated grain growth process.  相似文献   

6.
The interaction between dissolved Ba2+ and dissociated ammonium salt of poly(acrylic acid) (PAA-NH4) in aqueous suspension has been studied. The dissolved Ba2+ causes flocculation of dissociated PAA-NH4, thus degrading its dispersing effectiveness in aqueous BaTiO3 suspensions. The concentration of PAA-NH4 required to stabilize aqueous BaTiO3 suspension increases with increasing Ba2+ concentration at a given pH. A stability map, which is determined by a rheological study, is constructed to describe the amount of PAA-NH4 required to have well-dispersed aqueous BaTiO3 suspensions as a function of Ba2+ concentrations at different pH values.  相似文献   

7.
Novel Doping Mechanism for Very-High-Permittivity Barium Titanate Ceramics   总被引:2,自引:0,他引:2  
Barium titanate (BaTiO3) can be doped with La3+ ions via partial substitution for Ba2+ ions; charge balance is maintained by the creation of Ti4+ vacancies. Samples processed in an atmosphere of 1 bar O2 and a temperature of 1350°C are insulating and free from electronic defects associated with either O2 loss or reduction of Ti4+ to Ti3+. The Curie temperature ( T c) decreases approximately linearly as the lanthanum content increases and, at the same time, an increase in the permittivity (ɛ') maximum at T c occurs. For the composition Ba1- x La x Ti1- x /4O3, where x = 0.05, ɛ' has a maximum value of 19000 at 18°C, compared with a typical value of 10000 at 130°C in undoped BaTiO3 ceramics. This value is the highest value reported for A-site-doped BaTiO3 and is linked to the mechanism of combined A-site doping and Ti-vacancy creation.  相似文献   

8.
Formation of BaTiO3-SrTiO3 solid solution during sintering of powder mixtures is characterized by preferential diffusion of Ba2+ ions. As a consequence, several nonequilibrium phases are temporarily formed; they were identified by X-ray and microprobe analysis. Eutectic liquid appears below 1300°C, which may explain exaggerated grain growth during sintering of BaTiO3-SrTiO3 mixtures. Disturbance in neck growth and Kirkendall-type porosity hamper densification in the heterogeneous system as compared with the pure titanates.  相似文献   

9.
Experimental evidence determined by scanning transmission electron microscopy, scanning Auger electron spectroscopy, and lattice parameter measurements is reported for interfacial segregation in pure and doped perovskite materials, e.g., BaTiO3 and SrTiO3. The segregation behavior for isovalent dopants (e.g., Sr2+, Ca2+, or Pb2+ at a Ba2+ site) is mainly associated with a strain energy contribution from ionic misfit. However, both strain energy and space charge contributions are important in determining the segregation behavior of aliovalent ions (e.g., La3+ or Nd3+ at a Ba2+ site and Fe3+ or Ni3+ at a Ti4+ site). Segregation depths for aliovlent dopants are typically 15 to 20 nm thick. Besides dopants, constituent alkaline-earth ions also segregate to interfaces. Their segregation behavior is promoted by high temperatures, low partial pressures of oxygen, and the presence of acceptors. The results are explained in terms of a proposed theory of segregation presented in part I of the present series.  相似文献   

10.
Incorporation of La3+ into the BaTiO3 lattice was studied on samples of various composition, using quantitative WDS microanalysis (EPMA) in combination with scanning electron microscopy (SEM) and X-ray powder diffractometry (XRPD). Direct determination of solid-solution formulas by microanalysis supports the structure model of a solid solution with La3+ on Ba2+ sites and a deficient Ti4+ sublattice, independent of the starting composition. Solid solution extends on the tie line, which points from BaTiO3 to La4Ti3O12, to the composition of approximately Ba0.70- La0.38Ti0.925( V "")0.075O3. On the basis of these results, the BaTiO3-rich part of the BaO-La2O3-TiO2 phase diagram was constructed.  相似文献   

11.
Effect of Ba2+ substitution for Pb2+ on the dielectric and electric-field-induced strain characteristics of the PMN–PZ–PT ceramics has been investigated in the compositions of the tetragonal-rich 0.2PMN–0.36PZ–0.44PT and rhombohedral-rich 0.2PMN–0.4PZ–0.4PT ceramics. The phase approached cubic structure from the tetragonal and rhombohedral, and grain size was reduced when the Ba2+ cation was substituted. As Ba2+ content increased, frequency-dependent relaxor-like behavior of the dielectric constant was observed at temperatures below the dielectric maximum ( T max) for compositions with 20 and 25 mol% Ba2+. Electric-field-induced strain was maximized in the 12 mol% Ba2+-substituted 0.2PMN–0.4PZ–0.4PT specimen ( S max= 0.15%), and maximum piezoelectric, d 31, was 300 in the 14 mol% Ba2+-substituted 0.2PMN–0.4PZ–0.4PT specimen.  相似文献   

12.
Compensation Effect in Semiconducting Barium Titanate   总被引:1,自引:0,他引:1  
Donor-doped, stoichiometric BaTiO3 sintered at 1350°C for 1 h exhibits a maximum room-temperature conductivity at [La3+]∼0.15 mol%. Elements of lower valence than Ba2+ or Ti4+, when incorporated into semiconducting BaTiO3, are regarded as poisoning impurities, i.e., acceptors. They tend to increase the room-temperature resistivity of the semiconducting BaTiO3. For insulating BaTiO3 resulting from high Mg2+ acceptor doping levels, the semiconductivity can be restored by introducing higher La3+ donor-dopant concentrations. This behavior is interpreted as a compensation effect based on the defect chemistry of the acceptor- and donor-doped BaTiO3.  相似文献   

13.
Nanograined BaTiO3 ceramics prepared from 40-nm-size BaTiO3 nanopowders exhibited the cubic as well as the tetragonal phase, while nanograined BaTiO3 ceramics prepared from BaTiO3 nanopowders coated with Mn had only the tetragonal phase. The dielectric constant of the latter was 10 times larger than that of the former; the latter exhibited PTCR behavior with a resistivity jump ratio of about 5.0 × 104. These physical properties of the BaTiO3 ceramics appeared to be significantly affected by the strain near grain boundaries; such strain resulted in a phase transition from the cubic to the tetragonal phase in the nanograined BaTiO3 ceramics, even though the grain size was about 40 nm.  相似文献   

14.
The high-temperature equilibrium electrical conductivity of Ce-doped BaTiO3 was studied in terms of oxygen partial pressure, P (O2), and composition. In (Ba1−xCe x )TiO3, the conductivity follows the −1/4 power dependence of P (O2) at high oxygen activities, which supports the view that metal vacancies are created for the compensation of Ce donors, and is nearly independent of P (O2) where electron compensation prevails at low P (O2). When Ce is substituted for the normal Ti sites, there is no significant change in conductivity behavior compared with undoped BaTiO3, indicating the substitution of Ce as Ce4+ for Ti4+ in Ba(Ti1−yCe y )O3. The Curie temperature ( T c) was systematically lowered when Ce3+ was incorporated into Ba2+ sites, whereas the substitution of Ce4+ for Ti4+ sites resulted in no change in this parameter.  相似文献   

15.
Low-frequency dielectric response of air- and oxygen-sintered ceramics with the composition 0.9BaTiO3–0.1La(Mg1/2Ti1/2) O3 (0.9BT–0.1LMT) has been studied in the temperature range of 12–550 K. In comparison with pure BT, in 0.9BT–0.1LMT the dielectric permittivity maximum is shifted by almost 300 K toward lower temperatures. Both real and imaginary parts of dielectric permittivity of the solid solution, in the range 12–150 K, show a strong frequency-dependent behavior, which is typical of relaxors. On the basis of the model of exponential cluster size distribution and the Cole–Cole equation, the degree of interaction between the polar clusters was estimated. It was shown that the oxygen vacancies arising during sintering at high temperatures did not affect noticeably the relaxor properties of the material. The role of heterovalent La3+/Ba2+ and Mg2+/Ti4+ substitutions in the relaxor behavior formation is discussed.  相似文献   

16.
The effects of Dy doping and sintering parameters on the properties of BaTiO3 ceramics were studied. The average grain size decreases with increasing Dy content and is controlled at ∼1.5 μ m by 0.8 at.% Dy. The Curie temperature change, associated with ≤1.2 at.% Dy, is <3°C. The dielectric constant is ∼2600 for specimens doped with 0.8 at.% Dy, calcined at 1200°C, and sintered at 1450°C. The dielectric constant variation with ambient temperature is much less than that of conventional BaTiO3 ceramics. Lattice constant c decreases with increasing Dy concentration whereas a increases slightly. The effects of grain size on dielectric constant, lattice parameters, and linear thermal expansion coefficient are more pronounced than the chemical effects of Dy doping in the ferroelectric state, whereas in the paraelectric state, these characteristics are almost independent of grain size as well as Dy concentration. The decrease in the frequency of occurrence of 90° twins with decreasing grain size implies that internal stress, which develops when BaTiO3 ceramics are cooled below Tc , strongly influences the effects of grain size.  相似文献   

17.
The substitution of up to 5% Ca2+ for Ba2+ in BaTiO3 results in a shift in the oxygen pressure dependence of the equilibrium electrical conductivity that is in the same direction as that caused by addition of acceptor impurities such as Al3+ or Ca2+ substituted for Ti4+. In contrast to the latter effect, however, the shape of the conductivity plot is not changed, the conductivity value at the conductivity minimum is not affected, and the amount of the shift increases with decreasing temperature of measurement. It is shown that the shift is primarily due to an increase in the enthalpy of reduction and a decrease in the enthalpy of oxidation as increasing amounts of Ba2+ are replaced by Ca2+.  相似文献   

18.
To investigate the effect of reoxidation on the grain-boundary acceptor-state density of reduced barium titanate, n -doped BaTiO3 ceramics are sintered in a reducing atmosphere (2% H2+ 98% N2) and then annealed in oxygen. After annealing at 1150°C for different times, the experimental results show a relationship between temperature-averaged acceptor-state density and annealing time as N s= N so Bt 1/n with n between 2 and 3. An inherent acceptorstate density N so= 4.25 × 1012 cm−2 is obtained with an increase rate B = 4.8 × 1012 cm−2. min−1/3, when n reaches 3. The inherent grain-boundary acceptor states in the reduced n -doped BaTiO3 ceramics are believed not due to adsorbed oxygen ions.  相似文献   

19.
An amphoteric water-soluble copolymer, i.e., poly(acrylamide/(α- N,N -dimethyl- N -acryloyloxyethyl) ammonium ethanate) (PAAM/DAAE), was evaluated as a novel dispersant for aqueous BaTiO3 (BT) slurries. The dispersing property of this copolymer was examined by means of rheology, sedimentation, particle size, green density, zeta potential, and leached Ba2+ concentration measurements. The results indicate that PAAM/DAAE could reduce the viscosity of slurries greatly, cause BT particle sizes to shift to smaller values, and make green compacts more consolidated. Compared with a commercial dispersant, ammonium salt of poly(methacrylic acid) (PMAA-NH4), it is as effective or even better in preparing stabilized suspensions. More importantly, PAAM/DAAE could lessen the leached Ba2+ concentration. This is related to the adsorption behavior of this copolymer onto BT particles, and the interaction between the adsorbed dispersant and dissolved barium ions.  相似文献   

20.
BaTiO3 powder doped with La donor and codoped with Mn or Mg acceptor was sintered at 1350°C/1 h in air. For Ladoped BaTiO3, the room-temperature resistivity decreased to a minimum at [La3+] ∼ 0.15 mol%. For La-Mn-codoped BaTiO3, the minimum resistivity occurred at [La3+] - 2[Mn2+] ∼ 0.15 mol%. When the ceramic was changed to a fine-grained insulator by high donor doping ([La3+] >0.15 mol%), its semiconductivity was restored, and the relatively homogeneous, coarse-grained microstructure recurred by codoping with either Mg or Mn acceptor, with the transition at [La3+] - 2[Mg2+] = 0.15 mol% or [La3+] - 2[Mn2+] = 0.15 mol%. The analogy of a compensation effect between La-Mn- and La-Mg-codoped BaTiO3 suggested that Mn acceptor added to BaTiO3 exists as Mn2+ ion in the bulk grain region; its influence on the positive temperature coefficient of resistivity behavior is then discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号