首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transdermal diffusion of insulin, a model polypeptide drug, across the human cadaver skin (HCS) was evaluated in vitro, in presence of penetration enhancing solvents, anionic surfactants, biosurfactants, a natural moisturizing agent and combinations thereof. Also, an attempt was made to relate the enhanced penetration to physical parameters like distribution coefficient, surface tension and viscosity. The results of the permeation experiments indicate that the permeation enhancers used in the present investigation significantly enhance the amount of drug entering into the HCS and the amount reaching to the skin. A synergistic effect on permeation enhancement was observed in cases where combination of permeation enhancers were selectively used. Reasons for this synergism were critically examined and established.  相似文献   

2.
In vitro skin permeation of Timolol maleate through human cadaver skin was studied using Franz diffusion cell. The results indicate that the drug penetrates poorly through human cadaver skin. However, skin penetration enhancers such as dimethyl sulfoxide (DMSO), oleic acid (OA) and lauryl chloride (LC) enhanced the permeability of Timolol maleate (TM) through human cadaver skin. The permeation enhancement of drug was maximum by lauryl chloride amongst the three enhancers. Moreover, lauryl chloride increases the permeation of drug through skin with increase in the time of application and concentration on skin. The change in lag time was also observed.  相似文献   

3.
The objective of the present study was to investigate the effect of various terpenes, including a diterpene, forskolin (FSK; a putative penetration enhancer), on skin permeation of valsartan. Permeation studies were carried out with Automated Transdermal Diffusion Cells Sampling System (SFDC 6, LOGAN Instruments Corp., NJ, USA) through rat skin and human cadaver skin (HCS) using ethanol: IPB (pH 7.4) (40:60) as vehicle. The efficacy of the study terpenes for permeation of valsartan across rat skin and human cadaver skin was found in the order of cineole > d-limonene > l-menthol > linalool > FSK and cineole > d-limonene > linalool > l-menthol > FSK, respectively. No apparent skin irritation (erythema, edema) was observed on treatment of skin with terpenes including FSK. FT-IR, DSC, and histopathological studies revealed that FSK enhanced the skin permeation of the active drug by disruption and extraction of lipid bilayers of SC in consonance with other terpenes.  相似文献   

4.
To develop the new local anesthetic formulations with a suitable bioadhesive property, hydroxypropyl methylcellulose (HPMC)-based gel was formulated. As the drug concentration in the gels, and the temperature of surrounding solutions increased, the drug release increased. The activation energy of tetracaine permeation was 4.47 kcal/mol. The effects of permeation enhancers on the permeation rate of drug through skin were studied using various enhancers, such as the glycols, the nonionic surfactants, and the bile salts. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the highest enhancing effects on drug permeation through skin. The analgesic activity was examined using a tail-flick analgesimeter. In the AUEC (area under the efficacy curve) of the rat-tail flick test, tetracaine gel containing polyoxyethylene 2-oleyl ether showed about 3.2-fold increase in analgesic activity compared with the control. The results of this study support that the tetracaine gels with efficient anesthetic effects could be developed using HPMC and poloxamer with combination of enhancer and vasoconstrictor.  相似文献   

5.
Book Review     
The objective of the present study was to investigate the effect of various terpenes, including a diterpene, forskolin (FSK; a putative penetration enhancer), on skin permeation of valsartan. Permeation studies were carried out with Automated Transdermal Diffusion Cells Sampling System (SFDC 6, LOGAN Instruments Corp., NJ, USA) through rat skin and human cadaver skin (HCS) using ethanol: IPB (pH 7.4) (40:60) as vehicle. The efficacy of the study terpenes for permeation of valsartan across rat skin and human cadaver skin was found in the order of cineole > d-limonene > l-menthol > linalool > FSK and cineole > d-limonene > linalool > l-menthol > FSK, respectively. No apparent skin irritation (erythema, edema) was observed on treatment of skin with terpenes including FSK. FT-IR, DSC, and histopathological studies revealed that FSK enhanced the skin permeation of the active drug by disruption and extraction of lipid bilayers of SC in consonance with other terpenes.  相似文献   

6.
We investigated in vitro skin penetration and permeation of fluconazole from emulsions containing different penetration enhancers. Fluconazole permeation was high (15-65% of the applied dose) across hairless mouse skin and low (8-9%) across pig ear skin. Permeation across mice skin from a formulation containing propyleneglycol and isopropyl myristate was significantly higher than that observed with the paraffin oil and propyleneglycol or Transcutol® emulsions. With pig skin, the paraffin oil or isopropyl myristate and propyleneglycol emulsions showed similar skin permeation and penetration. However, these emulsions provided epidermal concentrations higher than the minimal inhibitory concentrations for most dermatophytes.  相似文献   

7.
The aim of this work was to study the release and the permeation rate of lorazepam, in order to develop a transdermal therapeutic system (TTS) containing that drug. Only a small number of drugs are by themselves able to permeate the skin at a useful rate in order to achieve a therapeutic effect. The lorazepam permeation rate did not reach that value and required a skin permeation enhancer to increase the skin's permeability. Three permeation enhancers (Tween 80, sodium lauryl sulfate, and benzalkonium chloride) were investigated in two different concentrations: 1% and 5% of the amount of lorazepam. The best permeation enhancement results were obtained using benzalkonium chloride in concentration of 5%.  相似文献   

8.
To enhance the systemic transdermal delivery of papaverine for the treatment of erectile dysfunction, several factors that influence transdermal delivery of papaverine HCl were studied. The effects of membrane types for in vitro permeation study, human skin layers, solvent/cosolvent systems and the penetration enhancers on the transdermal permeation of papaverine HCl were investigated. A combination of caproic acid, ethanol and water in the volume ratio of 50%:30%:20% was chosen as penetration enhancer and incorporated in two gel bases: 18% Pluronic F-127 and 2% Carbopol 940. In vivo skin permeation studies were performed with two loading doses (0.6% and 2%) in rabbits. The flux and permeability coefficient of papaverine HCl through different human skin layers suggested that the major barrier layer for papaverine HCl was residing primarily in the stratum corneum. However, the viable epidermis and dermis layer also contributed certain degrees of diffusion resistance. Differential Scanning Calorimetry study showed that penetration enhancer exhibited a counter effect with papaverine HCl on the temperature and enthalpy in both gels. In vitro drug release study demonstrated significant increases in the steady-state flux, permeability coefficient and enhancement ratio in these gels. Faster drug transports and higher bioavailability were also observed in rabbits. Skin irritation test performed in rabbits demonstrated a mild skin reaction with mean PII scores of 2 and below; however the recovery was fast. In conclusion, caproic acid, ethanol and water in the volume ratio of 50%:30%:20% is an effective penetration enhancer to deliver papaverine HCl transdermally for systemic absorption.  相似文献   

9.
ABSTRACT

We investigated in vitro skin penetration and permeation of fluconazole from emulsions containing different penetration enhancers. Fluconazole permeation was high (15–65% of the applied dose) across hairless mouse skin and low (8–9%) across pig ear skin. Permeation across mice skin from a formulation containing propyleneglycol and isopropyl myristate was significantly higher than that observed with the paraffin oil and propyleneglycol or Transcutol® emulsions. With pig skin, the paraffin oil or isopropyl myristate and propyleneglycol emulsions showed similar skin permeation and penetration. However, these emulsions provided epidermal concentrations higher than the minimal inhibitory concentrations for most dermatophytes.  相似文献   

10.
To formulate a transdermal drug delivery system of captopril, monolithic adhesive matrix type patches containing 20% captopril, different pressure-sensitive adhesives, and various permeation enhancers were prepared using a labcoater. The effects of the adhesives and permeation enhancers on skin permeation of captopril from the prepared patches were evaluated using Franz diffusion cells fitted with excised rat skins. The permeation rate of the drug through the excised skin was dependent on the type of polyacrylate copolymers studied. Fatty alcohols resulted in a pronounced enhancing effect on the skin permeation of captopril, while dimethyl sulfoxide,N-methyl-2-pyrrolidone, oleic acid, Transcutol, and polysorbate 20 showed no significant enhancing effect. The permeation-enhancing effect of the fatty alcohols reached the maximum at the level of 10%. Based on these results, a captopril patch may be developed with further optimization.  相似文献   

11.
Abstract

The aim of this work was to study the release and the permeation rate of lorazepam, in order to develop a transdermal therapeutic system (TTS) containing that drug. Only a small number of drugs are by themselves able to permeate the skin at a useful rate in order to achieve a therapeutic effect. The lorazepam permeation rate did not reach that value and required a skin permeation enhancer to increase the skin's permeability. Three permeation enhancers (Tween 80, sodium lauryl sulfate, and benzalkonium chloride) were investigated in two different concentrations: 1% and 5% of the amount of lorazepam. The best permeation enhancement results were obtained using benzalkonium chloride in concentration of 5%.  相似文献   

12.
To enhance the systemic transdermal delivery of papaverine for the treatment of erectile dysfunction, several factors that influence transdermal delivery of papaverine HCl were studied. The effects of membrane types for in vitro permeation study, human skin layers, solvent/cosolvent systems and the penetration enhancers on the transdermal permeation of papaverine HCl were investigated. A combination of caproic acid, ethanol and water in the volume ratio of 50%:30%:20% was chosen as penetration enhancer and incorporated in two gel bases: 18% Pluronic F-127 and 2% Carbopol 940. In vivo skin permeation studies were performed with two loading doses (0.6% and 2%) in rabbits. The flux and permeability coefficient of papaverine HCl through different human skin layers suggested that the major barrier layer for papaverine HCl was residing primarily in the stratum corneum. However, the viable epidermis and dermis layer also contributed certain degrees of diffusion resistance. Differential Scanning Calorimetry study showed that penetration enhancer exhibited a counter effect with papaverine HCl on the temperature and enthalpy in both gels. In vitro drug release study demonstrated significant increases in the steady-state flux, permeability coefficient and enhancement ratio in these gels. Faster drug transports and higher bioavailability were also observed in rabbits. Skin irritation test performed in rabbits demonstrated a mild skin reaction with mean PII scores of 2 and below; however the recovery was fast. In conclusion, caproic acid, ethanol and water in the volume ratio of 50%:30%:20% is an effective penetration enhancer to deliver papaverine HCl transdermally for systemic absorption.  相似文献   

13.
Topical gel formulations of diclofenac sodium were prepared by using sodium carboxymethylcellulose (NaCMC), a low-toxicity cellulose polymer as a gel-forming material that is biocompatible and biodegradable. The influence of various formulation variables, such as initial drug concentrations and NaCMC concentration, and certain skin permeation enhancers on release characteristics of the diclofenac sodium from the prepared gels through a standard cellophane membrane was studied in comparison with four commercially available gel formulations of diclofenac sodium,. The cumulative amounts released and the apparent release rates were higher for the prepared gels in comparison with the commercial formulations. Skin permeation studies using abdominal rat skin revealed good improvement of skin permeation characteristics of diclofenac sodium using NaCMC gels as compared to the commercial gels. The cumulative amount permeated at 6 h (microg/cm2), steady-state flux Jss (microg/cm2 h), lag time tL (h), permeability coefficient kp (cm/s), partition coefficient k, and diffusion coefficient D (cm2/s) were determined for the prepared gels in comparison with the commercial gels. Skin permeation enhancers such as isopropyl alcohol (IPA), Tween 80, and alpha-tocopherol polyethylene glycol succinate (TPGS) exhibited little or no effect on the permeation characteristics of diclofenac sodium. Infrared (IR) spectrum and differential scanning calorimetry (DSC) studies on the pure diclofenac sodium, NaCMC, and their physical mixture at a 1:1 ratio revealed that there was no positive evidence for the interactions between the drug and NaCMC, indicating the compatibility of the drug and the vehicle. Based on experimental results, preparation of diclofenac sodium gels using NaCMC vehicle is promising.  相似文献   

14.
The aim of this study was to improve the transdermal delivery of cyclobenzaprine (CBZ) from drug-in-adhesive patch which showed less side effects and better compliance. CBZ base was prepared and then characterized using differential scanning calorimetry (DSC). The interaction between CBZ and pressure-sensitive adhesive (PSA) was determined by Fourier Transform Infrared Spectroscopy (FT-IR). The influences of PSAs, penetration enhancers, patch thickness and drug content on the transdermal delivery of CBZ were studied thoroughly in vitro. Both CBZ releasing from patch and penetrating through the skin showed very great effect on the transdermal delivery of CBZ. The percentage of drug released from patch was increased with the decreasing of patch thickness, and so did the permeation percentage. The stratum corneum (SC) contributed approximately 57% resistance of total skin permeation resistance, and Span 20 increased the transdermal permeation by approximately 1.59-fold. The pharmacokinetic parameters were obtained through in vivo experiments of the optimized formulation using rabbit. Furthermore, the in vitro skin permeation results of CBZ patch correlated well with the in vivo absorption results in rabbit.  相似文献   

15.
The present work investigates effectiveness of basil oil, a volatile oil containing alcoholic terpenes, as a potential penetration enhancer for improved skin permeation of labetolol hydrochloride (LHCl) with reference to camphor, geraniol, thymol, and clove oil. Saturation solubilities of LHCl were determined in water, vehicle (ethanol:water, 60:40 v/v) and vehicle containing 5% w/v terpenes. Comparable (P > 0.05) saturation solubilities were found suggesting an insignificant increase in LHCl flux across rat skin on account of thermodynamic activity. Permeation of LHCl in vehicle per se and in presence of 5% w/v enhancer was investigated by performing in vitro rat abdominal skin permeation studies using a side-by-side glass diffusion cell. Various parameters viz. steady state flux, permeability coefficient, lag time, partition coefficient, diffusion coefficient, and enhancement ratios (ER) were calculated from the permeation data. Basil oil produced the maximum enhancement (ER = 46.52) over neat vehicle, among all enhancers. Activation energies for LHCl permeation in water, vehicle per se and in presence of 5% w/v basil oil were found to be 23.16, 18.71, and 10.98 kcal/mole, respectively. Lowering of activation energy in presence of basil oil suggests creation of new polar pathways in the skin for enhanced permeation of LHCl. Basil oil is proposed as a promising penetration enhancer for improved transdermal drug delivery of labetolol.  相似文献   

16.
The permeation of Bepridil through excised human skin was measured from vehicles composed of various mixtures of aqueous buffer and the permeation enhancers ethanol, DMSO or DMF. Only DMSO was found to act as a true permeation enhancer for the drug, the magnitude of its action depending on its concentration in the vehicle. At concentrations greater than 50% DMSO the permeability coefficient of the drug was increased over and above that which could be accounted for by changes in partitioning of the drug between vehicle and skin. The effects of ethanol could be related to changes in the measured skin/vehicle partition coefficients of the drug. DMF showed a complicated, concentration dependent influence on permeation.  相似文献   

17.
Thepresent work investigates effectiveness of basil oil, a volatile oil containing alcoholic terpenes, as a potential penetration enhancer for improved skin permeation of labetolol hydrochloride (LHCl) with reference to camphor, geraniol, thymol, and clove oil. Saturation solubilities of LHCl were determined in water, vehicle (ethanol:water, 60:40 v/v) and vehicle containing 5% w/v terpenes. Comparable (P > 0.05) saturation solubilities were found suggesting an insignificant increase in LHCl flux across rat skin on account of thermodynamic activity. Permeation of LHCl in vehicle per se and in presence of 5% w/v enhancer was investigated by performing in vitro rat abdominal skin permeation studies using a side-by-side glass diffusion cell. Various parameters viz. steady state flux, permeability coefficient, lag time, partition coefficient, diffusion coefficient, and enhancement ratios (ER) were calculated from the permeation data. Basil oil produced the maximum enhancement (ER?=?46.52) over neat vehicle, among all enhancers. Activation energies for LHCl permeation in water, vehicle per se and in presence of 5% w/v basil oil were found to be 23.16, 18.71, and 10.98 kcal/mole, respectively. Lowering of activation energy in presence of basil oil suggests creation of new polar pathways in the skin for enhanced permeation of LHCl. Basil oil is proposed as a promising penetration enhancer for improved transdermal drug delivery of labetolol.  相似文献   

18.
Ambroxol is an expectoration improver and mucolytic agent that has been used to treat acute and chronic disorders. However, ambroxol needs to be administered percutaneously in order to avoid systemic adverse effects, such as headache, drowsiness, dizziness, and insomnia, which can occur after oral administration. The aim of this study was to develop a gel preparation containing a permeation enhancer to enhance the delivery of ambroxol. The ambroxol gels were prepared using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The release characteristics of the drug from the gels were examined according to the receptor medium, drug concentration, and temperature. The rate of drug permeation into the skin was enhanced by incorporating various enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants, and the fatty acids into the gels. The permeation study through mouse skin was examined at 37˚C. The rate of drug release increased with increasing drug concentration and temperature. Among the enhancers used, propylene glycol mono caprylate showed the best enhancing effects. The estimated activation energy of release (Ea), which was calculated from the slope of a log P versus 1000/T plot, was 14.80, 14.22, 13.91, and 12.46 kcal/mol for ambroxol loading doses of 2, 3, 4, and 5%, respectively. The results of this study show that the gel preparation of ambroxol containing a permeation enhancer could be developed for the enhanced transdermal delivery of ambroxol.  相似文献   

19.
Ambroxol is an expectoration improver and mucolytic agent that has been used to treat acute and chronic disorders. However, ambroxol needs to be administered percutaneously in order to avoid systemic adverse effects, such as headache, drowsiness, dizziness, and insomnia, which can occur after oral administration. The aim of this study was to develop a gel preparation containing a permeation enhancer to enhance the delivery of ambroxol. The ambroxol gels were prepared using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The release characteristics of the drug from the gels were examined according to the receptor medium, drug concentration, and temperature. The rate of drug permeation into the skin was enhanced by incorporating various enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants, and the fatty acids into the gels. The permeation study through mouse skin was examined at 37?C. The rate of drug release increased with increasing drug concentration and temperature. Among the enhancers used, propylene glycol mono caprylate showed the best enhancing effects. The estimated activation energy of release (Ea), which was calculated from the slope of a log P versus 1000/T plot, was 14.80, 14.22, 13.91, and 12.46 kcal/mol for ambroxol loading doses of 2, 3, 4, and 5%, respectively. The results of this study show that the gel preparation of ambroxol containing a permeation enhancer could be developed for the enhanced transdermal delivery of ambroxol.  相似文献   

20.
Permeation of zidovudine (3'-azido-3'-deoxythymidine, AZT) and probenecid from oily bases containing an alcohol through rat skin was examined. Isopropyl myristate (IPM), as an oily vehicle, showed a penetration enhancing effect for AZT and probenecid. Ethanol, n-propanol, and n-butanol were used as additives in IPM and were examined for their own permeation and the enhancing effect on the permeation of AZT and probenecid. The skin permeation of AZT and probenecid from IPM was enhanced by addition of the alcohol in IPM. The degree of the enhancement was decreased with increasing lipophilicity of the alcohol used. me permeation rate of the drug from those systems was shown to be governed by penetration-enhancing effects of the oily base and alcohol, and the penetration of the alcohol itself through the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号