首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Edge TA  Hill S 《Water research》2007,41(16):3585-3594
Multiple microbial source-tracking methods were investigated to determine the source of elevated Escherichia coli levels at Bayfront Park Beach in Hamilton Harbour, Lake Ontario. E. coli concentrations were highest in wet foreshore sand (114,000 CFU/g dry sand) and ankle-depth water (177,000 CFU/100mL), declining rapidly in deeper waters. Many gull and geese droppings were enumerated each week on the foreshore sand within 2m of the waterline. Both antimicrobial resistance analysis and rep-PCR DNA fingerprinting of E. coli collected at the beach and nearby fecal pollution sources indicated that E. coli in sand and water samples were predominantly from bird droppings rather than from pet droppings or municipal wastewater. Both methods indicated a trend of decreasing bird contamination, and increasing wastewater contamination, moving offshore from the beach. When foreshore sand was treated as a reservoir and secondary source of E. coli, waterborne E. coli were found to be more similar to sand isolates than bird or wastewater isolates out to 150 m offshore. Multiple lines of evidence indicated the importance of bird droppings and foreshore sand as primary and secondary sources of E. coli contamination in beach water at Bayfront Park.  相似文献   

2.
Lee CM  Lin TY  Lin CC  Kohbodi GA  Bhatt A  Lee R  Jay JA 《Water research》2006,40(14):2593-2602
Monitoring the water quality of recreational beaches is only one step toward understanding microbial contamination -- the primary cause of beach closings. The surf zone sediment reservoir is typically overlooked and may also be important. This study involved monitoring the fecal indicator bacteria (FIB) levels in water and sediment at three ocean beaches (two exposed and one enclosed) during a storm event, conducting laboratory microcosm experiments with sediment from these beaches, and surveying sediment FIB levels at 13 beaches (some exposed and some enclosed). Peaks in Escherichia coli and enterococci concentrations in water and sediment coincided with storm activity at the two exposed beaches, while levels of both FIB were consistently high and irregular at the enclosed beach. Results from microcosm experiments showing similar, dramatic growth of FIB in both overlying water and sediment from all beaches, as well as results from the beach survey, support the hypothesis that the quiescent environment rather than sediment characteristics can explain the elevated sediment FIB levels observed at enclosed beaches. This work has implications for the predictive value of FIB measurements, and points to the importance of the sediment reservoir.  相似文献   

3.
We previously reported that the macrophytic green alga Cladophora harbors high densities (up to 10(6) colony-forming units/g dry weight) of the fecal indicator bacteria, Escherichia coli and enterococci, in shoreline waters of Lake Michigan. However, the population structure and genetic relatedness of Cladophora-borne indicator bacteria remain poorly understood. In this study, 835 E. coli isolates were collected from Cladophora tufts (mats) growing on rocks from a breakwater located within the Indiana Dunes National Lakeshore in northwest Indiana. The horizontal fluorophore enhanced rep-PCR (HFERP) DNA fingerprinting technique was used to determine the genetic relatedness of the isolates to each other and to those in a library of E. coli DNA fingerprints. While the E. coli isolates from Cladophora showed a high degree of genetic relatedness (92% similarity), in most cases, however, the isolates were genetically distinct. The Shannon diversity index for the population was very high (5.39). Both spatial and temporal influences contributed to the genetic diversity. There was a strong association of isolate genotypes by location (79% and 80% for lake- and ditch-side samplings, respectively), and isolates collected from 2002 were distinctly different from those obtained in 2003. Cladophora-borne E. coli isolates represented a unique group, which was distinct from other E. coli isolates in the DNA fingerprint library tested. Taken together, these results indicate that E. coli strains associated with Cladophora may be a recurring source of indicator bacteria to the nearshore beach.  相似文献   

4.
McLellan SL  Salmore AK 《Water research》2003,37(11):2700-2708
We conducted a comprehensive regional spatial assessment of bacterial water quality in order to determine the points of entry of fecal pollution into a swimming beach area on Lake Michigan that historically has had numerous water quality advisories for elevated levels of Escherichia coli (E. coli). Intensive, consecutive-day water samples were collected during dry and rainy conditions across multiple shoreline and offshore sites, and E. coli levels were enumerated from these samples. For both dry and rainy days, shoreline sites demonstrated significantly higher E. coli levels than offshore regions. We found that offshore (10-150m from shore) E. coli levels did not exceed 235CFU/100ml in more than 5% of the samples collected for 19 surveys (n=209). In contrast, samples taken at the beach area exceeded 235CFU/100ml in 66% of the samples collected for 43 shoreline surveys (n=675). Locally high E. coli levels coincided with bird presence and stormwater at the swimming beach located within the marina, and were unrelated to E. coli levels in connecting harbor waters. We conclude that beach water quality may be impacted by local, persistent contamination, which may confound routine beach monitoring and prevent the detection of regional pollution from other sources.  相似文献   

5.
Wheeler Alm E  Burke J  Spain A 《Water research》2003,37(16):3978-3982
Potential fecal contamination of sand in the wave-washed zone of public bathing beaches is overlooked in beach monitoring programs. Activity in this zone can bring pathogens to the sand surface or into the water, presenting a health risk to sensitive populations. On a unit weight basis (colony forming units per 100g), the mean summer abundance of the fecal indicator bacteria enterococci and Escherichia coli was 3-38 times higher in the top 20 cm of wet-sand cores than in the water column at six freshwater bathing beaches. E. coli were 4 times more abundant than enterococci in water but counts were similar in the sand. A correlation (r=0.60) existed between E. coli counts in the water and in the top 5 cm of sand only, whereas no relationship existed between enterococci abundance in water and sand. In general, enterococci were most numerous in the 5-10 cm sand stratum and E. coli in the 0-5 cm stratum. These preliminary data show that wet freshwater beach sand is a reservoir of fecal indicator bacteria. Enteric pathogens may also be present in beach sand.  相似文献   

6.
Nevers MB  Whitman RL 《Water research》2011,45(4):1659-1668
Efforts to improve public health protection in recreational swimming waters have focused on obtaining real-time estimates of water quality. Current monitoring techniques rely on the time-intensive culturing of fecal indicator bacteria (FIB) from water samples, but rapidly changing FIB concentrations result in management errors that lead to the public being exposed to high FIB concentrations (type II error) or beaches being closed despite acceptable water quality (type I error). Empirical predictive models may provide a rapid solution, but their effectiveness at improving health protection has not been adequately assessed. We sought to determine if emerging monitoring approaches could effectively reduce risk of illness exposure by minimizing management errors. We examined four monitoring approaches (inactive, current protocol, a single predictive model for all beaches, and individual models for each beach) with increasing refinement at 14 Chicago beaches using historical monitoring and hydrometeorological data and compared management outcomes using different standards for decision-making. Predictability (R2) of FIB concentration improved with model refinement at all beaches but one. Predictive models did not always reduce the number of management errors and therefore the overall illness burden. Use of a Chicago-specific single-sample standard—rather than the default 235 E. coli CFU/100 ml widely used—together with predictive modeling resulted in the greatest number of open beach days without any increase in public health risk. These results emphasize that emerging monitoring approaches such as empirical models are not equally applicable at all beaches, and combining monitoring approaches may expand beach access.  相似文献   

7.
Stream sediments have been recognised as an in-channel store of faecal contamination that can be mobilised during floods or other sediment-disturbing events. We studied this store of faecal contamination by creating artificial floods during dry weather when, in the absence of overland flow from the catchment, the only source of faecal bacteria was stores within the channel. Artificial floods, created by releasing water from a supply reservoir, increased the E. coli concentration in the water column by two orders of magnitude, from a background level of 10(2) cfu per 100 mL to over 10(4) cfu per 100 mL. The bacterial peak concentrations and yields declined systematically through a triplicate flood series. The size of the total in-channel store, calculated as the sum of yields of an infinite series of artificial floods, was approximately 10(8) cfu m(-2) of streambed area. Direct measurements of sediment E. coli found few sites (only those associated with cattle crossings) with areal concentrations as high as 10(8) cfu m(-2), consistent with flood yields. Concentrations of E. coli in the biofilms on exposed rocks were orders of magnitude lower, indicating that exposed rocks were not a source of E. coli released by the artificial floods.  相似文献   

8.
The microbial water quality at two beaches, Hobie Beach and Crandon Beach, in Miami-Dade County, Florida, USA was measured using multiple microbial indicators for the purpose of evaluating correlations between microbes and for identifying possible sources of contamination. The indicator microbes chosen for this study (enterococci, Escherichia coli, fecal coliform, total coliform and C. perfringens) were evaluated through three different sampling efforts. These efforts included daily measurements at four locations during a wet season month and a dry season month, spatially intensive water sampling during low- and high-tide periods, and a sand sampling effort. Results indicated that concentrations did not vary in a consistent fashion between one indicator microbe and another. Daily water quality frequently exceeded guideline levels at Hobie Beach for all indicator microbes except for fecal coliform, which never exceeded the guideline. Except for total coliform, the concentrations of microbes did not change significantly between seasons in spite of the fact that the physical-chemical parameters (rainfall, temperature, pH, and salinity) changed significantly between the two monitoring periods. Spatially intense water sampling showed that the concentrations of microbes were significantly different with distance from the shoreline. The highest concentrations were observed at shoreline points and decreased at offshore points. Furthermore, the highest concentrations of indicator microbe concentrations were observed at high tide, when the wash zone area of the beach was submerged. Beach sands within the wash zone tested positive for all indicator microbes, thereby suggesting that this zone may serve as the source of indicator microbes. Ultimate sources of indicator microbes to this zone may include humans, animals, and possibly the survival and regrowth of indicator microbes due to the unique environmental conditions found within this zone. Overall, the results of this study indicated that the concentrations of indicator microbes do not necessarily correlate with one another. Exceedence of water quality guidelines, and thus the frequency of beach advisories, depends upon which indicator microbe is chosen.  相似文献   

9.
McLain JE  Williams CF 《Water research》2008,42(15):4041-4048
As the reuse of municipal wastewater escalates worldwide as a means to extend increasingly limited water supplies, accurate monitoring of water quality parameters, including Escherichia coli (E. coli), increases in importance. Chromogenic media are often used for detection of E. coli in environmental samples, but the presence of unique levels of organic and inorganic compounds alters reclaimed water chemistry, potentially hindering E. coli detection using enzyme-based chromogenic technology. Over seven months, we monitored E. coli levels using m-Coli Blue 24((R)) broth in a constructed wetland filled with tertiary-treated municipal effluent. No E. coli were isolated in the wetland source waters, but E. coli, total coliforms, and heterotrophic bacteria increased dramatically within the wetland on all sampling dates, most probably due to fecal inputs from resident wildlife populations. Confirmatory testing of isolates presumptive for E. coli revealed a 41% rate of false-positive identification using m-Coli Blue 24((R)) broth over seven months. Seasonal differences were evident, as false-positive rates averaged 35% in summer, but rose sharply to 75% in the late fall and winter. Corrected E. coli levels were significantly correlated with electrical conductivity, indicating that water chemistry may be controlling bacterial survival within the wetland. This is the first study to report that accuracy of chromogenic media for microbial enumeration in reclaimed water may show strong seasonal differences, and highlights the importance of validation of microbiological results from chromogenic media for accurate analysis of reclaimed water quality.  相似文献   

10.
He LM  He ZL 《Water research》2008,42(10-11):2563-2573
Beach advisories are issued to the public in California when the concentration of fecal indicator bacteria (FIB), including total coliform, fecal coliform (or Escherichia coli), and Enterococcus, exceed their recreational water health standards, or when the amount of a rainfall event is above the pre-determined threshold. However, it is not fully understood about how and to what degree stormwater runoff or baseflow exerts impacts on beach water quality. Furthermore, current laboratory methods used to determine the FIB levels take 18-96 h, which is too slow to keep pace with changes in FIB levels in water. Thus, a beach may not be posted when it is contaminated, and may be posted under advisory when bacterial levels have already decreased to within water quality standards. The study was designed to address the above critical issues. There were large temporal and spatial variations in FIB concentrations along two popular State Beaches in San Diego, CA, USA. The rainstorm-induced runoff from the watersheds exerts significant impacts on the marine recreational water quality of the beaches adjacent to lagoons during the first 24-48 h after a rain event. The large volume of stormwater runoff discharging to beaches caused high FIB concentrations in beach water not only at the lagoon outlet channel and the mixing zone, but also at the locations 90 m away from the channel northward or southward along the shoreline. The geomorphology of beach shoreline, distance from the outlet channel, wind strength, wind direction, tide height, wave height, rainfall, time lapse after a rainstorm, or channel flow rate played a role in affecting the distribution of FIB concentrations in beach water. Despite the great temporal and spatial variability of FIB concentrations along a shoreline, the artificial neural network-based models developed in this study are capable of successfully predicting FIB concentrations at different beaches, different locations, and different times under baseflow or rainstorm conditions. The models are based on readily measurable variables including temperature, conductivity, pH, turbidity, channel water flow, rainfall, and/or time lapse after a rainstorm. The established models will help fill the current gap between beach posting and actual water quality and make more meaningful and effective decisions on beach closures and advisories.  相似文献   

11.
While the US Environmental Protection Agency's (EPA) Beaches Environmental Assessment and Coastal Health (BEACH) Act requires coastal and Great Lakes’ states to implement plans for monitoring bacterial contamination of recreational beach water, exactly how this monitoring should occur has not been regulated. This study examined differences in concentration of Escherichia coli in water collected from different depths and from different horizontal locations across the beach. E. coli concentrations were significantly different (p<0.05), when water from different depths was compared. Sampling water at depths of 30, 60, and 120 cm resulted in significantly lower E. coli concentrations as depth increased. Had the State of Wisconsin chosen to collect beach water monitoring samples at a shallower or deeper depth, numbers of beach closures and the potential risk to public health would have changed substantially. These data imply that a revised and standardized protocol for monitoring beach water should be adopted by all states of a monitoring region to better compare microbial contamination of beaches and protect public health.  相似文献   

12.
Davis K  Anderson MA  Yates MV 《Water research》2005,39(7):1277-1288
The spatial and temporal distributions of indicator bacteria in a small, multiple-use source drinking water reservoir in Southern California, USA were quantified over the period August 2001-July 2002. High levels of total and fecal coliform bacteria were present in Canyon Lake (annual geometric mean concentrations+/-SEM of 3.93+/-0.02 and 3.02+/-0.03 log cfu/100mL, respectively), while comparatively low levels of enterococci and E. coli were found (1.16+/-0.02 log cfu/100mL and 0.30+/-0.03 log MPN/100mL, respectively). As a result, these different indicator bacteria yielded quite divergent indices of water quality, with 72.1% of all surface samples (n=294) exceeding the USEPA single-sample limit of 400 cfu/100mL fecal coliform bacteria, while none (0%) of the samples exceeded the single-sample limit for E. coli (n=194). Regression analyses found a positive correlation between total and fecal coliform bacteria (R=0.50, significant at p<0.001) and between enterococci and E. coli (R=0.51, significant at p<0.001), but no correlation or inverse correlations were found between coliform concentrations and enterococci and E. coli levels. External sources responsible for the high total and fecal coliform bacteria were not identified, although laboratory studies demonstrated growth of the coliform bacteria in lake water samples. Enterococci and E. coli were not observed to grow, however. Bacteria concentrations varied relatively little laterally across the lake, although strong vertical gradients in fecal coliform and enterococcus bacteria concentrations were present during summer stratification, with concentrations about 10x higher above the thermocline when compared with surface concentrations. In contrast, total bacteria, total virus and total coliform bacteria levels were unchanged with depth. Seasonal trends in bacteria concentrations were also present. This study shows that the choice of indicator bacteria and sampling depth can both strongly affect the apparent microbial water quality of a lake or reservoir.  相似文献   

13.
Bertrand R  Roig B 《Water research》2007,41(6):1280-1286
Escherichia coli O157 strains have emerged as important human enteric pathogens. Strains that express the O-antigen 157 are commonly associated with severe clinical manifestations, including bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. E. coli O157 strains may be transmitted in a variety of ways, including food, water and person-to-person or animal-to-person contact. Fecal contamination is one source of environmental contamination and is responsible for the presence of these pathogens in the environment. We used a specific and sensitive PCR assay based on the rfbE gene to detect low levels of these pathogens in wastewater. The set of primers used was designed to amplify an intragenic segment of the rfbE gene. The amplification assay detected 200 CFU of E. coli O157 in pure water. The prevalence of E. coli O157 in the effluents of 44 wastewater treatment plants was determined (7%).  相似文献   

14.
High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples.  相似文献   

15.
Escherichia coli concentration was determined in digestive tract and muscle of Jenynsia multidentata and Bryconamericus iheringi through bioassays. Field experiments were also conducted with J. multidentata collected in the Suquía River, Córdoba, Argentina. E. coli was quantified by the most probable number, using lauryl sulphate tryptose broth with 4-methylumbelliferyl-beta-D-glucuronide. For bioassays, E. coli concentrations 10(2), 10(3), 10(4), 10(5), 10(6)CFU/ml were introduced in aquarium water. E. coli was recovered from the digestive tracts of J. multidentata and B. iheringi in all the concentrations assayed. Bacterial critical load in water for the recovery of bacteria from muscle, was 10(3)CFU/ml for both species. The regression analysis between E. coli loads in water and those found in digestive tract and muscle showed a positive linear relationship for J. multidentata and B. iheringi. The same relation was observed between the concentration of bacteria in digestive tract and muscle in both species. In field experiments, E. coli was recovered from digestive tract and muscle of J. multidentata. The presence of E. coli in the studied fish suggests that they can carry bacteria to non-polluted waters. However, further studies are necessary to evaluate its significance for public and environmental health.  相似文献   

16.
A model has been developed to predict concentrations of the faecal bacteria indicator E. coli in streams draining grazed hill-country in New Zealand. The long-term aim of the modelling is to assess effects of land management upon faecal contamination and, in the short term, to provide a framework for field-based research. A daily record of grazing livestock is used to estimate E. coli inputs to a catchment, and transport of bacteria to the stream network is simulated within surface and subsurface flows. Deposition of E. coli directly to streams is incorporated where cattle have access to them, and areas of permanent saturation ('seepage zones') are also represented. Bacteria are routed down the stream network and in-stream processes of deposition and entrainment are simulated. Die-off, both on land and in water, is simulated as a function of temperature and solar radiation. The model broadly reproduces observed E. coli concentrations in a hill-country catchment grazed by sheep and beef cattle, although uncertainty exists with a number of the processes represented. The model is sensitive to the distance over which surface runoff delivers bacteria to a stream and the amount of excretion direct to streams and onto seepage zones. Scenario analysis suggests that riparian buffer strips may improve bacterial water quality both by eliminating livestock defaecation in and near streams, and by trapping of bacteria by the riparian vegetation.  相似文献   

17.
The microbiological quality of drinking water from 144 private water supplies in the Netherlands was tested and additionally the occurrence of Escherichia coli O157 was examined. Faecal indicators were enumerated by using standard membrane filtration methods. The presence of E. coli O157 was determined using a specific enrichment method. Eleven percent of the samples contained faecal indicators whereas E. coli O157:H7 was isolated from 2.7% of the samples that otherwise met the drinking water standards. The E. coli O157 positive water supplies were located on camp-sites in agricultural areas with large grazer densities. Pulsed field gel electrophoresis (PFGE) analysis suggested that cattle might have been the cause of contamination. Our results indicate that compliance with microbiological quality standards obtained in routine monitoring does not always guarantee the absence of pathogens. The presence of pathogens such as E. coli O157 may suggest possible health consequences; however, a risk assessment process should be performed as the monitoring of both faecal indicator parameters and pathogens do not predict the effect of microbial contamination of drinking water on a population.  相似文献   

18.
Ahmed W  Tucker J  Harper J  Neller R  Katouli M 《Water research》2006,40(12):2339-2348
A comparison of the efficacy of an existing large metabolic fingerprint database of enterococci and Escherichia coli with a locally developed database was undertaken to identify the sources of faecal contamination in a coastal lake, in southeast Qld., Australia. The local database comprised of 776 enterococci and 780 E. coli isolates from six host groups. In all, 189 enterococci and 245 E. coli biochemical phenotypes (BPTs) were found, of which 118 and 137 BPTs were unique (UQ) to host groups. The existing database comprised of 295 enterococci UQ-BPTs and 273 E. coli UQ-BPTs from 10 host groups. The representativeness and the stability of the existing database were assessed by comparing with isolates that were external to the database. In all, 197 enterococci BPTs and 179 E. coli BPTs were found in water samples. The existing database was able to identify 62.4% of enterococci BPTs and 64.8% of E. coli BPTs as human and animal sources. The results indicated that a representative database developed from a catchment can be used to predict the sources of faecal contamination in another catchment with similar landuse features within the same geographical area. However, the representativeness and the stability of the database should be evaluated prior to its application in such investigation.  相似文献   

19.
Levels of arsenic in water from Meager Creek hot springs, British Columbia, Canada, were found to be naturally elevated. Biota including microbial mats, green algae, sedge, cedar, fleabane, monkey flower, moss, mushrooms and lichens, that were expected to be impacted by the water, were analyzed for total levels of arsenic and for arsenic species. The major arsenic species extracted from all samples were arsenate and arsenite, which are toxic forms of arsenic. Additionally, small amounts of arsenosugars X and XI were detected in microbial mats and green algae, implying that cyanobacteria/bacteria, and possibly green algae are capable of synthesizing arsenosugars from arsenate. Low to trace amounts of arsenosugars X and XI were detected in lichens and the fungus Tarzetta cupularis. A large fraction (on average, greater than 50%) of arsenic was not extracted by using methanol/water (1:1) and the chemical and toxicological significance of this arsenic remains unknown.  相似文献   

20.
Nevers MB  Whitman RL 《Water research》2005,39(20):5250-5260
Predictive modeling for Escherichia coli concentrations at effluent-dominated beaches may be a favorable alternative to current, routinely criticized monitoring standards. The ability to model numerous beaches simultaneously and provide real-time data decreases cost and effort associated with beach monitoring. In 2004, five Lake Michigan beaches and the nearby Little Calumet River outfall were monitored for E. coli 7 days a week; on nine occasions, samples were analyzed for coliphage to indicate a sewage source. Ambient lake, river, and weather conditions were measured or obtained from independent monitoring sources. Positive tests for coliphage analysis indicated sewage was present in the river and on bathing beaches following heavy rainfall. Models were developed separately for days with prevailing onshore and offshore winds due to the strong influence of wind direction in determining the river's impact on the beaches. Using regression modeling, it was determined that during onshore winds, E. coli could be adequately predicted using wave height, lake chlorophyll and turbidity, and river turbidity (R2 = 0.635, N = 94); model performance decreased for offshore winds using wave height, wave period, and precipitation (R2 = 0.320, N = 124). Variation was better explained at individual beaches. Overall, the models only failed to predict E. coli levels above the EPA closure limit (235 CFU/100 ml) on five of eleven occasions, indicating that the model is a more reliable alternative to the monitoring approach employed at most recreational beaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号