首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven different Al2O3-based suspensions were prepared by dispersing two nano-sized Al2O3 powders (having analogous size distribution and chemical composition but different surface chemistry), one micron-sized powder and their mixtures in a water + isopropanol solution. High velocity suspension flame sprayed (HVSFS) coatings were deposited using these suspensions as feedstock and adopting two different sets of spray parameters.The characteristics of the suspension, particularly its agglomeration behaviour, have a significant influence on the coating deposition mechanism and, hence, on its properties (microstructure, hardness, elastic modulus). Dense and very smooth (Ra ~ 1.3 μm) coatings, consisting of well-flattened lamellae having a homogeneous size distribution, are obtained when micron-sized (~ 1-2 μm) powders with low tendency to agglomeration are employed. Spray parameters favouring the break-up of the few agglomerates present in the suspension enhance the deposition efficiency (up to > 50%), as no particle or agglomerate larger than ~ 2.5 μm can be fully melted. Nano-sized powders, by contrast, generally form stronger agglomerates, which cannot be significantly disrupted by adjusting the spray parameters. If the chosen nanopowder forms small agglomerates (up to a few microns), the deposition efficiency is satisfactory and the coating porosity is limited, although the lamellae generally have a wider size distribution, so that roughness is somewhat higher. If the nanopowder forms large agglomerates (on account of its surface chemistry), poor deposition efficiencies and porous layers are obtained.Although suspensions containing the pure micron-sized powder produce the densest coatings, the highest deposition efficiency (~ 70%) is obtained by suitable mixtures of micron- and nano-sized powders, on account of synergistic effects.  相似文献   

2.
Friction stir processing (FSP) was applied to modify the microstructure of sintered Al–SiC composites with particle concentrations ranging from 4 to 16 vol%. Two SiC particle sizes (490N and 800 grades) were examined. Following FSP, the hardness of the 4 and 8 vol% of 490N grade SiC composites increased from 130 HV and 145 HV to 171 HV and 177 HV respectively. The increase was accounted for by the severe deformation occurring during FSP which uniformly distributed the SiC particles. The composites containing 16 vol% SiC could not be fully consolidated using FSP, and contained residual pores and lack of consolidation which originated from the as-received sintered microstructure. The hardness correlated well with the mean inter-particle spacing for the SiC particles in the case of composites containing 4 and 8 vol% SiC.  相似文献   

3.
This is a study on the fabrication of surface composites of SiC, TiC particulates, and AISI 304 substrate by high voltage electron beam irradiation. Using CaF2 powders as flux, two kinds of surface composites were fabricated for a comparative analysis of the microstructural modification and mechanical properties. Through the employed process, the powders and substrate surface were melted and surface composite layers were successfully formed in both cases. In the specimen fabricated with SiC powders, a volume fraction of Cr23C6 particles (−22 vol.%) were homogeneously distributed along solidification cell boundaries. The large amount of Cr23C6 particles in combination with solid solution hardening of Si in the matrix resulted in the improved hardness and wear resistance of the surface composite layer, that are 2 to 3 times those of the substrate. In the specimen fabricated with SiC and Ti+SiC powders, TiC and Cr23C6 particles were precipitated without precipitation of SiC.  相似文献   

4.
We report on the superficial layer formation resulting from the carburization followed by chromization of α-Fe samples obtained by powder sintering technique. The carburization and chromization were carried out by thermal diffusion between 880-980 °C and 950-1050 °C in a solid powder mixture of charcoal/BaCO3 and ferrochromium/alumina/NH4Cl, respectively. The obtained layers were investigated using X-ray diffraction, optical microscopy, Vickers micro-hardness technique and scanning electron microscopy. The results show that the layers are of micrometric size and consist mostly of chromium carbides of different phases. These phases as well as the thickness of the layers are closely related to the treatment temperature used for carburization and to the temperature and Cr initial concentration in the mixture used for chromization. For highly reactive carbo-chromization conditions (high concentration of Cr, and high carburization and chromization temperatures) the superficial layer is constituted of two chromium carbide sub-layers (Cr3C2/Cr7C3) separated by a sharp interface. The thickness and hardness of the coating layer reached 45 μm and 2300 HV, respectively. Such coating could be used for tools that have to be abrasion and oxygen resistant at high temperatures.  相似文献   

5.
Fe-based metallic glass forming powders have been deposited on mild steel substrates using high power laser cladding. Coatings microstructures have been analysed by scanning- and transmission-electron microscopy and at varying substrate dilutions, have been found to comprise a 100 to 500 nm interdendritic austenitic phase and a dendritic dual-phase of ferrite/martensite. The application of double layer coatings has shown microstructural refinement. This leads to a needle-like microstructure resulting in a nanoindentation tested hardness increase from ~ 11 GPa up to almost 15 GPa. The layers have been subjected to both dry sliding wear and 3-body microscale abrasive wear testing. The dry sliding results show the layers to exhibit excellent wear resistance - particularly at high speed (50 cm s− 1) with wear rate values of ~ 1 × 10− 8 mm3/Nm being recorded for the double layer coatings. The single layer coatings reveal a micro-wear mechanism connected with the slip between the ferrite and martensite in the dendritic dual-phase. Microscale abrasive wear testing also reveals that the layers have a good wear resistance, with wear scars exhibiting characteristic material removal by micro-chipping. There is no preferential abrasion of any one phase, nor are track over-lap areas, cracks or pores found to result in varying wear scar dimensions.  相似文献   

6.
Combustion powder spraying has been used in the coating of graphite by a layer of Al and SiC composite utilizing the Box-Wilson design that fixes the optimum spraying parameters of Al/SiC wt.% composition, substrate temperature and spraying distance. Graphite substrate surface was conditioned by subjecting to sand blast roughing and nitrogen flushed furnace treating. Under the spraying conditions considered, a single spraying pass attains a coating layer 65 ± 15 µm of average thickness. Two optimum spraying conditions that concern adhesion of coating to graphite and its hardness are obtained. Upon spraying for adhesion purpose, the coat/graphite adhesion strength is found to depend mainly on graphite surface conditioning, but for hardness purpose, it is found to depend mainly on SiC wt.% composition.Microstructure of transversal coating section indicates that adhesion efficiency is due to physical interlocking of molten sprayed materials on the roughened and treated graphite surface. Phases identified from fractured coatings by XRD analysis show individual phase of Al, SiC and graphite in addition to small amount of new extra phases that combine the three constituents such as Al4C3 and Al4Si2C5. These phases play a role with the good physical interlocking in achieving adhesion strength that exceeds that of graphite.  相似文献   

7.
This study investigates chemical vapor deposition of C from CH4 on particulate SiO2 and subsequent carbothermal conversion of the resultant composite particles to SiC powders. Mass measurements, HR-TEM, SEM and XRD were used to characterize the products at various stages of the processes. It was found that oxide particles gained mass rapidly at 1300 K under CH4 atmosphere owing to enhanced C uptake. Pyrolytic carbon layers 5-8 nm thick were deposited on SiO2 particles. The coated powders with high C loadings (40-42.6 wt.% C) were converted to SiC under Ar flow in a temperature range of 1700-1800 K. Almost pure SiC powders containing a mixture of particles and whiskers of ~ 100 nm were synthesized at 1750 K for 45 min and at 1800 K for 30 min using the starting powder with 40 wt.% C. Whisker diameter increased with the C content of the coated powder. It was proposed that SiC whisker was grown by a vapor-solid mechanism. Equilibrium thermodynamic analysis by the method of minimization of Gibbs’ free energy predicted the reaction pathways to SiC and to the product species in the Si-O-C-Ar system. This study demonstrated that either C shell-SiO2 core powders or SiC powders could be synthesized rapidly in the same reactor.  相似文献   

8.
The effect of 25-nm silicon top-layer on the hardness and thermal stability of 100-nm diamond-like carbon (DLC) film annealed at 750–900 °C has been investigated. The evolution of surface morphology, microstructure and reaction between C and Si was examined by high resolution scanning/transmission electron microscope, Raman and FTIR spectroscopy. The hardness of films was investigated using nano-indentation. After 750–900 °C annealing, the hardness of single carbon layer greatly decreased at 750 °C and then slightly increased at 900 °C due to the formation of SiC at the interface between the single C film and the Si substrate. In contrast, no significant variation occurred on the hardness of two-layer Si/C film under RTA at 750–900 °C. Although the higher annealing temperature resulted in higher sp2/sp3 bonding ratio as well as more sp2 bonding formation in the carbon layer to soften the structure, the added Si top-layer can protect DLC from reaction with environmental oxygen and sustain the hardness of the composite film because of the multiphasic formation with extra SiC on the surface and at the interface between the C layer and Si substrate through great interdiffusion between Si and C for extending DLC high-temperature application.  相似文献   

9.
Metal nanocomposite nickel coatings reinforced with regularly shaped nanotubular titanates (multi-layered wall structure with ca. 5 nm internal diameter and 30 to 500 nm tube length) were electrodeposited from a modified Watts nickel electrolyte. Tribological properties of the coatings are characterised via measurements of the coating hardness, surface friction, wear rate and elastic modulus. Surface microstructures of the coatings were imaged (SEM and TEM analyses). The nanotubular titanates were shown to be embedded within the bulk of the coating and some particles protruded from the top surface. The nanotubular titanates in the nickel coating acted akin to a cross-linked and mesh-like matrix to enhance the dispersion-strengthening mechanism against external load. Nanocomposite nickel coatings reinforced with nanotubular titanates have shown (a) ~ 22% reduction in surface friction against a spherical diamond tip, (b) ~ 29% enhancement in wear resistance in a 3-body slurry abrasive wear test (steel counter body and 5 μm SiC particles), (c) ~ 102% improvement in coating hardness and (d) ~ 26% improvement in elastic modulus when compared with a nickel coating containing irregularly shaped nanosized titanium dioxide particles.  相似文献   

10.
Laser processing of Ti-SiC composite coating on titanium was carried out to improve wear resistance using Laser Engineered Net Shaping (LENS™) — a commercial rapid prototyping technology. During the coating process a Nd:YAG laser was used to create small liquid metal pool on the surface of Ti substrate in to which SiC powder was injected to create Ti-SiC metal matrix composite layer. The composite layers were characterized using X-ray diffraction, scanning and transmission electron microscopy equipped with fine probe chemical analysis. Laser parameters were found to have strong influence on the dissolution of SiC, leading to the formation of TiSi2, Ti5Si3 and TiC with a large amount of SiC on the surface. Detailed matrix microstructural analysis showed the formation of non-stoichiometric compounds and TiSi2 in the matrix due to non-equilibrium rapid solidification during laser processing. The average Young's modulus of the composite coatings was found to be in the range of 602 and 757 GPa. Under dry sliding conditions, a considerable increase in wear resistance was observed, i.e., 5.91 × 10− 4 mm3/Nm for the SiC reinforced coatings and 1.3 × 10−3 mm3/Nm for the Ti substrate at identical test conditions.  相似文献   

11.
Copper matrix composites reinforced with 1 wt.%, 2 wt.%, 3 wt.% and 5 wt.% SiC particles were fabricated by powder metallurgy method. Cu and Cu-SiC powder mixtures were compacted with a compressive force of 280 MPa and sintered in an open atmospheric furnace at 900-950 °C for 2 h. Within the furnace compacted samples were embedding into the graphite powder. The presence of Cu and SiC components in composites was verified by XRD analysis. Optical and SEM studies showed that Cu-SiC composites have a uniform microstructure in which silicon carbide particles are distributed uniformly in the copper matrix. The results of the study on mechanical and electrical conductivity properties of Cu-SiC composites indicated that with increasing SiC content (wt.%), hardness increased, but relative density and electrical conductivity decreased. The highest electrical conductivity of 98.8% IACS and relative density of 98.2% were obtained for the Cu-1 wt.%SiC composite sintered at 900 °C and this temperature was defined as the optimum sintering temperature.  相似文献   

12.
Zr-based amorphous surface alloyed materials were fabricated by high-energy electron beam irradiation in this study. A mixture of Zr-based amorphous powders and LiF + MgF2 flux was deposited on a pure copper substrate, and then an electron beam was directed on this powder mixture to fabricate a one-layered surface alloyed material. A two-layered surface alloyed material was also fabricated by irradiating electron beam again onto the powder mixture deposited on the one-layered surface alloyed material. The microstructural analysis results indicated that a number of coarse crystalline phase particles were formed in the one-layered surface alloyed layer, whereas a small amount of fine and hard crystalline particles were homogeneously distributed in the amorphous matrix of the two-layered surface alloyed layer. Owing to these fine and hard crystalline particles, the hardness and wear resistance of the two-layered surface alloyed layer improved over the one-layered surface alloyed layer or other kinds of surface alloyed layers. The thermal conductivity of the two-layered surface alloyed layer was much lower than that of titanium-alloy-based or stainless-steel-based surface alloyed layers. These findings suggested the possibility of applying Zr-based amorphous surface alloyed materials to high wear-resistant thermal barrier coatings or parts.  相似文献   

13.
Nano-sized cupric oxide (CuO) films with biomimetic super-hydrophobic surfaces were fabricated by isothermally oxidizing nano-sized Cu films prepared by electroless plating on smooth glass substrate following modification with octadecanethiol (CH3-(CH2)17-SH). The microstructure characterization showed that CuO films with 54 nm thickness have a dual-scale structure consisting of the 150-200 nm agglomerates composed of the 30-50 nm granules, a similar structure to lotus-leaf. The measurement of wettability showed that CuO films modified with octadecanethiol exhibit a super-hydrophobic property with a water contact angle of ~ 154°. The mechanism leading to the super-hydrophobic property of CuO films was also analyzed based on the results of X-ray photoelectron spectroscopy (XPS).  相似文献   

14.
The modification of a thermally sprayed cemented carbide (WC-CrC-Ni) layer by friction stir processing (FSP) was studied. The cemented carbide layer was successfully modified using a sintered cemented carbide (WC-Co) tool. The defects in the cemented carbide layer disappeared and the hardness of the cemented carbide layer increased to ∼ 2000 HV, which was about 1.5 times higher than that of the as-sprayed cemented carbide layer. Additionally, the cemented carbide layer was bonded to the SKD61 (Nominal composition: 0.35-0.42 mass% C, 0.8-1.2 mass% Si, 0.25-0.5 mass% Mn, 4.8-5.5 mass% Cr, 1.0-1.5 mass% Mo, 0.8-1.2 mass% V, balance Fe) substrate by diffusion of the metallic elements and the distortion of the coating-substrate interface producing a mechanical interlocking effect.  相似文献   

15.
Fe-Ni-Cr based Alloy 800 substrates were pack aluminized at 1273 K for 8 hours in argon atmosphere. The cross-section of aluminized substrates indicated formation of multilayer of aluminides as revealed by microscopy, electron probe microanalysis and X-ray diffraction. The outermost layer (~ 150 μm) was found to consist of FeAl + Fe2Al5 type phases, while the adjoining layer (~ 250 μm) was composed of an FeAl type phase. The innermost layer (~ 60 μm), which was a solid solution zone, was found to consist of ~ 43 at.% Fe, 38 at.% Cr, 11 at.% Ni containing about 6 at.% Al. In microhardness test, a hardness variation of 213 to 1098 Knoop hardness number along the cross-section was obtained. Scratch test along the cross-section at load levels ranging from 0.9 to 10 N with a loading rate of 30 N/min showed a maximum penetration depth of 12 μm indicating a good adherence of aluminide coatings.  相似文献   

16.
Slurry based mullite/gadolinium silicate (Gd2SiO5) environmental barrier coatings (EBCs) were developed for melt infiltrated (MI) SiC/SiC composites. The coating chemically adhered well on the substrates. Thermal cycling of uncoated MI-SiC/SiC composites conducted between 1350 °C and 90 °C (one hour hot and 15 min cold) in a 96.5% H2O-3.5% O2 environment caused severe oxidation damage after 100 cycles resulting in the formation of dense silica layer of about 25 μm maximum thickness. Mullite/Gd2SiO5 EBCs provided excellent protection to MI-SiC/SiC against moisture damage with significantly less oxidation of the substrate; only about a 2 μm thick oxide layer formed even after 400 similar thermal cycles. The hair-line cracks formed at the coating/substrate interface after 400 cycles causing partial coating de-lamination.  相似文献   

17.
A356/Al2O3 surface nanocomposite was produced by friction stir processing (FSP) method. X-ray diffractometery, optical and scanning electron microscopy, microhardness and nanoindentation tests were used to characterize the samples. The results indicated that the uniform distribution of Al2O3 particles in A356 matrix by FSP process can improve the mechanical properties of specimens. The hardness and elastic modulus of the as-received A356, the sample treated by the FSP without Al2O3 particles, surface micro- and nanocomposite specimens were about 75 Hv and 74 GPa, 69 Hv and 73 GPa, 90 Hv and 81 GPa, 110 Hv and 86 GPa, respectively.  相似文献   

18.
This paper reports for the first time the synthesis of hexagonal diamond thin films on high-speed steel substrates by multi-mode microwave plasma enhanced chemical vapor deposition. Before deposition of the films, the substrate surface was treated by scratching with diamond powder. The deposited films were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy. The XRD patterns of (100) and (101) planes and the Raman peaks at ~ 1317-1322 cm− 1 were observed, confirming the formation of hexagonal diamond phase in the prepared films. The effects of voltage bias on the phase formation, microstructure and hardness of the films were also studied by setting the voltage to 0, − 70, − 150 and − 190 V. The highest hardness of 23.8 GPa was found in the film having clusters of size about 550 nm deposited under a bias voltage of − 150 V. These clusters were built up of grains of size about 14 nm.  相似文献   

19.
In this study, friction stir processing (FSP) was employed to develop a composite layer on the surface of as-cast AZ91 magnesium alloy using SiC particles (5 μm and 30 nm). The effects of the rotational and traverse speeds and the FSP pass number on the microstructure and microhardness of the friction stir processed (FSPed) layer with and without SiC particles were investigated. Optical microscopy and scanning electron microscopy (SEM) were employed for microstructural analysis. FSP produces a homogeneous microstructure by eliminating the precipitates near the grain boundaries. The analyses showed that the effects of the rotational and traverse speeds on the microstructure of specimens produced without nano-sized SiC particles are considerable; however, they are negligible in the specimens with particles. While the second FSP pass enhances the microstructure and microhardness of the samples with SiC particles, it has no significant effect on such properties in the samples without SiC particles.  相似文献   

20.
Amorphous hydrogen-free silicon carbide (a-SiC) coatings demonstrate good adhesion to different steel substrates, low intrinsic stress and high hardness however show quite high coefficient of friction in comparison with carbon-based coatings. Some addition of carbon to SiC can promote the decrease of friction coefficient.In the present work the amorphous hydrogenated silicon-carbide (a-SiC:H) films with different C/Si ratio were prepared at room temperature using DC magnetron sputtering in two ways: (i) sputtering of silicon target; (ii) sputtering of SiC target, both in the gas mixture of Ar and CH4. In the latter case the films contained less hydrogen at the same C/Si ratio. The mechanical and tribological properties of these films were studied to find their optimum combination.The hardness, elastic modulus (nanoindentation), intrinsic stress (Stoney's formula) and coefficient of friction (pin on disc tribometer) were examined in dependence on the technological parameters, film structure and composition (Raman spectra, electron probe microanalysis). An increase of carbon in the films from 50 to 70 at.% resulted in decrease of hardness and friction coefficient. In the first case (i) the hardness decreased from 13 to10 GPa and in the second case (ii) from 23 to 16 GPa. Thus sputtering of SiC target in the gas mixture of Ar and CH4 allows obtaining at room temperature the films with C/Si > 1 in which relatively high hardness (16-18 GPa) and low friction coefficient (~ 0.15) are combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号