首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
2.
3.
Measurement Techniques -  相似文献   

4.
5.
6.
7.
8.
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a hybrid imaging modality proposed to image electrical conductivity contrast of biological tissue with high spatial resolution. This modality combines magnetic excitations with ultrasound detection through the Lorentz force based coupling mechanism. However, previous studies have shown that MAT-MI method with single type of magnetic excitation can only reconstruct the conductivity boundaries of a sample. In order to achieve more complete conductivity contrast reconstruction, we proposed a multiexcitation MAT-MI approach. In this approach, multiple magnetic excitations using different coil configurations are applied to the object sequentially and ultrasonic signals corresponding to each excitation are collected for conductivity image reconstruction. In this study, we validate the new multiexcitation MAT-MI method for three-dimensional (3D) conductivity imaging through both computer simulations and phantom experiments. 3D volume data are obtained by utilizing acoustic focusing and cylindrical scanning under each magnetic excitation. It is shown in our simulation and experiment results that with a common ultrasound probe that has limited bandwidth we are able to correctly reconstruct the 3D relative conductivity contrast of the imaging object. As compared to those conductivity boundary images generated by previous single-excitation MAT-MI, the new multiexcitation MAT-MI method provides more complete conductivity contrast reconstruction, and therefore, more valuable information in possible clinical and research applications.  相似文献   

9.
10.
Magnetic induction tomography is used as an experimental tool for mapping the passive electromagnetic properties of conductors, with the potential for imaging biological tissues. Our numerical approach to solving the inverse problem is to obtain a Fourier expansion of the resistivity and the stream functions of the magnetic fields and eddy current density. Thus, we are able to solve the inverse problem of determining the resistivity from the applied and measured magnetic fields for a two-dimensional conducting plane. When we add noise to the measured magnetic field, we find the fidelity of the measured to the true resistivity is quite robust for increasing levels of noise and increasing distances of the applied and measured field coils from the conducting plane, when properly filtered. We conclude that Fourier methods provide a reliable alternative for solving the inverse problem.  相似文献   

11.
12.
The conversion of electromagnetic energy into heat by nanoparticles has the potential to be a powerful, non-invasive technique for biotechnology applications such as drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this Letter, we demonstrate a significant increase in the efficiency of magnetic thermal induction by nanoparticles. We take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the nanoparticle and maximize the specific loss power, which is a gauge of the conversion efficiency. The optimized core-shell magnetic nanoparticles have specific loss power values that are an order of magnitude larger than conventional iron-oxide nanoparticles. We also perform an antitumour study in mice, and find that the therapeutic efficacy of these nanoparticles is superior to that of a common anticancer drug.  相似文献   

13.
14.
15.
For the design of magnetic shields for induction heating, it is useful to analyse not only the magnetic field reduction but also the temperature behaviour of the shield. The latter is heated by its electromagnetic losses and by thermal radiation from the workpiece. A coupled thermal-electromagnetic axisymmetric finite element model is used to study the temperature of a shield for an axisymmetric induction heater, highlighting the effect of the radius, length, thickness and material of the shield on its temperature and magnetic shielding factor. Also the effect of frequency and workpiece dimensions is investigated. The model is validated by measuring magnetic induction, induced currents in the shield and temperature of the shield on the experimental setup. The temperature is unacceptably high for shields close to the excitation coil, especially if the shield length is lower than the workpiece length. Although the study is carried out for one specific induction heater geometry, the paper indicates the effect of parameters such as geometry, material and frequency on shield temperature so that the results are also useful for other induction heating configurations.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号