首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 18 毫秒
1.
考虑磁浮列车与轨道梁之间的主动控制电磁力的作用,车辆简化为移动均布二系悬挂模型,建立了磁浮车辆/轨道梁耦合振动分析模型,对磁浮列车在三跨连续梁上通过时轨道梁的振动反应进行了数值仿真.研究了车辆长度、车速、轨道梁刚度和跨度比等参数对轨道梁动力特性的影响,分析了参数f1/(v/l)与轨道梁动力反应的关系.建议轨道梁动力设计中以控制轨道梁的冲击系数和振动加速度为主,所得结论可为高速磁浮轨道梁设计提供理论依据.  相似文献   

2.
混凝土桥梁的收缩徐变效应在高速铁路桥梁工程中不可避免,会导致桥梁竖向变形,并最终导致CRTSⅡ型纵连板式轨道和桥面之间出现脱空。针对这一实际工程问题,深入研究收缩徐变引起的高速列车-纵连板式轨道-桥梁系统非线性动力相互作用问题。对桥梁收缩徐变下纵连板式轨道-桥梁系统非线性接触机制进行讨论;提出桥梁收缩徐变条件下高速列车-纵连板式轨道-桥梁系统非线性动力相互作用研究方法;在此基础上研究桥梁收缩徐变对桥轨非线性接触行为、轨道层间相互作用、轨道混凝土结构附加动应力以及列车动态特性的影响。研究表明:提出的研究方法可以有效地研究收缩徐变条件下列车-纵连板式轨道-桥梁结构的动力相互作用问题。在收缩徐变条件下,梁端处出现了底座和桥面间的脱空现象。列车动荷载引起桥轨接触力明显增大,同时也导致脱空区域发生明显变化。整体来看脱空区域长度对速度并不敏感。梁端位置处的轨道层间力有明显变化,砂浆力变化比扣件力剧烈。轨道板和底座上表面主要以承受拉应力为主,仅在脱空区域附近才出现局部受压;而下表面则呈现相反的应力分布。收缩徐变效应主要影响列车的振动,而对轨下结构的振动影响较小。  相似文献   

3.
轨道不平顺是诱发车-桥系统耦合振动的主要激励源之一,探明系统耦合振动不平顺敏感波长,对线路管理具有重要参考价值。首先,建立了高速磁浮列车-轨道梁耦合系统空间模型,其中磁浮列车被模拟为具有537个自由度的多体动力学模型,轨道梁被模拟为空间有限元模型,两者之间通过基于比例-微分(proportional-differentiation, PD)控制理论的磁轨关系耦合。其次,以上海高速磁浮为研究背景,选用5车编组列车驶过20跨简支梁桥为计算条件,通过与实测结果对比,验证了模型的正确性。最后,考虑轨道谐波不平顺激励,探讨了不同方向的轨道不平顺组合、不同轨道不平顺幅值和不同车速对列车和桥梁动力响应敏感波长及列车运行平稳性的影响。结果表明:磁浮列车-桥系统横向振动和竖向振动耦合性很弱;在设计车速430 km/h下,车体竖向、侧滚和点头加速度敏感波长分别为140~180 m、60~100 m和120~160 m,车体横向和摇头加速度敏感波长大于200 m;当波长为80、105、115、140和160 m时,会分别引发车体侧滚、摇头、横向、点头和竖向方向的共振;车体和主梁的响应幅值与轨道不平顺幅值基本...  相似文献   

4.
针对重庆轻轨实施详细的动力试验.测试轨道梁和墩的固有振动特性;测试轨道梁和墩在试验列车以不同速度行车、制动工况下的应变、位移、加速度动力响应,并进行了列车行车舒适性试验.在实测结果的基础上分析各工况下轨道梁和墩应变、位移及加速度的最大动力响应结果,并分析动力响应值及其动力系数与行车速度的关系.对比分析动力试验结果及理论计算结果,并参照铁路桥梁相关检定规范,结果表明轨道梁系统具有良好的结构强度和刚度,动力性能良好,单轨列车则具有良好行车舒适性.此外针对轨道梁的固有振动频率讨论其安全限值问题.试验及分析结果为该类型轨道交通系统的设计、检测评定及相应规范或标准的制定提供重要的基础资料.  相似文献   

5.
突变阵风因风速在短时内发生瞬时变化容易对高速列车的行车安全性造成威胁。根据一维多变量非平稳随机过程理论,模拟了空间相关的时变阵风脉动风速场。采用多体动力学软件SIMPACK和有限元分析软件ANSYS,建立了42自由度的刚性列车与柔性轨道-桥梁相互作用的刚柔耦合模型,考虑横风向时变阵风的影响,基于刚柔耦合法形成了较为完善的风-列车-轨道-桥梁耦合动力学分析系统。以大跨度拱桥为工程背景,分析了时变阵风在不同车速和风速下对列车和桥梁动力响应特性及行车安全性的影响。结果表明:阵风对桥梁和车辆的动力响应具有重要的影响;在相同条件下考虑阵风影响时,主跨跨中横向位移增幅达到了200%,车辆的轮重减载率、脱轨系数相比于不考虑阵风时增大近30%;在风速大于25 m/s,车速大于80 km/h,轮重减载率将超过安全限值,表明车辆可能发生脱轨。  相似文献   

6.
跨座式轻轨车与连续轨道梁空间振动分析   总被引:1,自引:0,他引:1       下载免费PDF全文
摘 要:提出了一种跨座式轻轨车与连续轨道梁空间耦合振动时域分析方法。桥梁采用常规有限单元模拟,跨座式轻轨车采用弹簧阻尼相连的多刚体模拟,可方便考虑走行轮、导向轮、稳定轮下轨道不平顺的影响,直接建立轻轨车-桥梁时变系统的空间振动方程,采用直接积分法同时求解轻轨车、桥梁的空间动力响应,并编制了相应的计算分析程序。以一联3×30 m的双线连续轨道梁为例,计算了轻轨车以不同车速通过双线轨道梁时全过程车桥动力响应。探讨了不同车速、单线行车、双线对开等不同工况对车桥动力响应的影响。计算结果表明:在设计行车速度下,轻轨车可安全舒适通过该连续轨道梁;桥梁具有良好的整体刚度。该方法可运用于跨座式轻轨车与其它大跨度桥梁的空间振动分析。  相似文献   

7.
江辉  王敏  曾聪  黄磊 《工程力学》2020,37(10):70-84
以跨越走滑断层的某高速铁路八跨简支梁桥为研究对象,基于OpenSEES平台建立其考虑梁-轨相互作用的线桥体系非线性数值模型,合成平行断层方向的水平地震动,分析了不同地震动强度下桥梁结构及CRTSII型板式无砟轨道结构的损伤特性,量化评定了结构构件的地震安全性。基于规范给出的轨道水平变形控制标准,评价了不同车速下线路的行车安全性,探讨了轨道结构的优化设计。研究结果表明:断层跨及其邻跨的地震响应最大,强震下面临严峻的破坏风险;地震下轨道水平变形明显,存在行车安全隐患的位置主要集中在断层跨及其两侧邻跨梁端;增加轨道侧向挡块数量可有效降低轨道水平变形,将侧向挡块增加至每跨每线6对时,罕遇地震下,除断层跨梁端处轨道的平行转角外,其余位置的轨道水平变形指标仍能满足车速为100 km/h时的行车安全限值。  相似文献   

8.
雷虎军  刘伟  黄炳坤 《振动与冲击》2020,39(10):249-255
为研究地震作用下超大跨铁路悬索桥桥上列车的行车安全问题,以某主跨为1 120 m的公铁两用悬索桥方案为研究对象,采用虚拟横梁法建立了全桥梁格模型,并通过板梁组合模型验证了梁格模型的正确性。在此基础上,通过输入7条地震波,采用自主编制的列车-轨道-桥梁-地震分析程序TTBSAS进行仿真计算,研究了一致激励、行波激励下悬索桥-列车系统的动力响应特征,分析了列车过桥时的行车安全性。结果表明:对于悬索桥-列车系统,地震对桥梁和轨道动力响应的影响大于车辆;横向地震除了使钢桁梁主梁及桥上轨道发生大幅横向振动外,还会诱发主梁的附加扭转振动;不考虑地震行波效应会严重低估列车的行车安全性指标。对于这些计算条件,桥上列车行车安全性研究的最不利行波波速为500 m/s,在0.15g设计地震作用下列车通过主跨1 120 m悬索桥时的安全车速阈值为300 km/h。  相似文献   

9.
介绍北方交通大学与比利时鲁汶大学、布鲁塞尔自由大学、比利时铁路公司合作,在巴黎至布鲁塞尔之间高速铁路线上的Antoing大桥进行的二次高速铁路桥梁动力试验。试验桥梁由跨度50m的多跨预应力混凝土简支槽型梁构成,试验中列车速度达265-310km/h。通过现场试验和实验结果分析,得到了桥梁的频率、振型、阻尼等自振特性,以及桥梁在高速列车作用下的动挠度、梁和桥墩的横向和竖向加速度、橡胶支座的相对位移、梁体的动应变等动力响应特性。试验经验和测试结果对于充实高速铁路桥梁动力分析理论、改进数值分析模型、验证计算结果、提高高速铁路桥梁的动力设计水平、保证行车安全,具有重要的意义。  相似文献   

10.
提出了一种可考虑TMD影响的列车桥梁空间振动时域分析方法,桥梁采用常规有限单元模拟,高速列车TMD采用南弹簧阻尼器相连的多刚体模拟,直接建立车-桥TMD时变系统运动方程,采用数值积分方法求解系统空间动力响应.以无碴轨道预应力混凝土40 m双线简支箱梁为例,首先对日本S.K.S.列车通过桥梁时引起共振的临界车速进行了分析,为控制箱梁共振车速下的较大振动响应,研究TMD不同参数对箱梁振动控制效果,大量计算了列车通过加装不同参数TMD箱梁时的动力响应.计算结果表明采用TMD可有效抑制高速铁路简支箱梁的共振,并得出了一种确定共振车速和TMD优选参数的简便方法,可供工程应用参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号