首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
为了研究干摩擦条件下对偶表面粗糙度对纳米粒子填充改性聚四氟乙烯(PTFE)复合材料摩擦磨损及转移膜特性的影响规律,本文采用冷压成型、热烧结的工艺方法制备nano-SiO2填充改性PTFE复合材料;采用LSR-2M型往复摩擦磨损试验机评价了nano-SiO2改性PTFE复合材料与具有三种不同表面粗糙度的对偶钢块(GCr15)之间的摩擦磨损性能;利用光学显微镜(OM)、扫描电子显微镜(SEM)和能谱仪(EDS)分别表征了转移膜及磨屑的形貌、微观结构以及化学成分,从微观角度揭示nano-SiO2改性PTFE复合材料的摩擦转移机理。试验结果表明,纯PTFE及不同含量nano-SiO2填充改性PTFE复合材料的摩擦系数均随对偶钢块表面粗糙度的增大整体呈增大趋势,在粗糙度为Ra0.1的对偶表面上复合材料的摩擦系数随着nano-SiO2含量的增加变化相对较小;在三种不同粗糙度对偶表面上,nano-SiO2的加入均有效降低了PTFE的磨损体积,当填充比例为0.5wt%时复合材料在粗糙度为Ra1.2的对偶面上摩擦学性能最佳,磨合时间约为纯PTFE的1/3(缩短了近10min),耐磨性较纯PTFE提高了34.1%。由此可见,复合材料中nano-SiO2的含量与对偶表面粗糙度存在一定的协同效应,即nano-SiO2的含量与对偶表面粗糙度具有匹配性,合理的摩擦配副能有效促进复合材料的摩擦转移,并能在对偶表面形成覆盖率高、均匀、连续、表面较粗糙且与摩擦方向趋向一致的转移膜,有利于降低材料的磨损。  相似文献   

2.
为了研究填充POB(聚苯酯)对Nano-SiO2/PTFE复合材料转移膜演化及摩擦性能的影响,采用冷压成型、热烧结的工艺方法制备Nano-SiO2/POB-PTFE和Nano-SiO2/PTFE两种复合材料;采用间歇称重法和原位观察法,在LSR-2M型往复摩擦磨损试验机上进行干摩擦试验;利用光学显微镜、扫描电镜和表面轮廓仪分别表征了转移膜的表面形貌、微观结构和三维形貌,从微观角度分析摩擦转移机理。结果表明,Nano-SiO2/PTFE复合材料的转移膜在对偶表面上形貌变化较快,不断重复生成-脱落过程,并伴随严重磨损,且没有形成较完整的转移膜。此外,生成的转移膜分层明显,且脱落痕迹显著,并有大量米粒状的磨屑附在对偶面上,导致反光性较差。而POB填充Nano-SiO2/PTFE复合材料,不仅增强了转移膜在对偶表面上的粘附力,又促进了均匀、连续转移膜的更好形成,表面反光性好,并且Nano-SiO2/POB-PTFE复合材料的磨损量较Nano-SiO2/ PTFE复合材料降低了两个数量级。POB与Nano-SiO2这两种填料可在PTFE复合材料的摩擦转移中形成协同减磨效应,从而有效促进转移膜均匀生成和稳定粘附,并大幅降低磨损率,这对斯特林机活塞环干摩擦密封材料的研制有良好的指导意义。  相似文献   

3.
PTFE和MoS_2填充尼龙复合材料摩擦行为研究   总被引:1,自引:0,他引:1  
以注塑成型法制备了聚四氟乙烯(PTFE)和MoS2填充PA1010复合材料,采用M-2000磨损试验机考察了复合材料与45钢对摩时的摩擦磨损性能,并利用扫描电子显微镜(SEM)分析了PA复合材料磨损表面及其偶件表面转移膜形貌。研究结果表明:PTFE填充PA1010可显著改善尼龙复合材料的摩擦磨损性能。PTFE质量分数为25%时,复合材料的摩擦学综合性能最佳。PTFE和MoS2共同填充PA1010时,复合材料的摩擦因数和磨损率随着PTFE含量的减少、MoS2含量的增加,整体呈现增大趋势,其中PA+20%PTFE+5%MoS2复合材料的减摩抗磨性能较好。在正常工作条件下(0.21-0.42 m/s,100-300 N),PA+25%PTFE复合材料的抗磨性优于相同条件下PA+20%PTFE+5%MoS2复合材料,但PA+20%PTFE+5%MoS2复合材料具有更宽的速度适用范围。PA复合材料的摩擦磨损性能与其在偶件表面形成的转移膜的特性有重要关系,转移膜的厚度大小、分布均匀状况以及和偶件的结合强度都会对复合材料的减摩抗磨性能产生影响。  相似文献   

4.
为了研究水润滑条件下试验载荷和速度对纳米碳化硅填料(Nano–SiC)改性超高分子量聚乙烯(UHMWPE)–橡胶复合材料摩擦学性能的影响,通过高温混炼、热压成型制备Nano–SiC辅以聚四氟乙烯(PTFE)填充改性UHMWPE–橡胶复合材料;采用MRH–3型环–块摩擦试验机探究4种不同载荷条件下复合材料的摩擦磨损性能,采用光学显微镜(OM)、扫描电子显微镜(SEM)和非接触光学3维轮廓仪对试样微观磨损表面形貌分析,从微观层面探究改性复合材料的摩擦机理。试验结果表明:在定载变速条件下,速度由0.005 m/s升到0.541 m/s时,改性复合材料的动、静摩擦系数均呈现大幅下降趋势,摩擦系数波动归于平稳,黏–滑现象逐渐减弱直至消失。试验载荷和纳米粒子含量的变化与试样摩擦磨损程度呈负相关:在水润滑条件下,随着纳米粒子含量增加,摩擦系数与磨损率均出现明显降低,填充比例5%的复合材料摩擦学性能最佳,摩擦系数整体较UHMWPE–橡胶材料降低35%,磨损率降低46.6%,磨损表面形貌也随之发生改变;随着载荷的增加,复合材料的磨损率从1.25×10~(–6) mm~3/(N·m)降至0.40×10~(–6) mm~3/(N·m)。Nano–SiC的含量与工况载荷压力对摩擦磨损均存在一定影响,即填充适量Nano–SiC的UHMWPE–橡胶复合材料能减轻黏–滑现象,与一定工况压力下的对偶钢环组成的摩擦配副能有效改善摩擦性能,有利于减小水润滑轴承的磨损,增强传动系统服役寿命。  相似文献   

5.
为了研究水润滑条件下试验载荷和速度对纳米填料(Nano-SiC)改性超高分子量聚乙烯(UHMWPE)/橡胶复合材料摩擦学性能的影响,通过高温混炼、热压成型制备Nano-SiC辅以聚四氟乙烯(PTFE)填充改性UHMWPE/橡胶复合材料。采用MRH-3型环-块摩擦实验机探究四种不同载荷条件下改性复合材料的摩擦磨损性能,采用光学显微镜(OM)、扫描电子显微镜(SEM)和非接触光学三维轮廓仪对试样微观磨损表面形貌分析,从微观层面探究改性复合材料的摩擦机理。试验结果表明:在定载变速条件下,速度由0.02m/s升到3.59m/s时,改性复合材料的动摩擦系数波动幅度与静摩擦系数均呈现大幅下降趋势,粘-滑现象(Stick-Slip Phenomenon)减弱,摩擦系数波动归于平稳;试验载荷和纳米粒子含量的变化与试样摩擦磨损程度呈负相关,在水润滑条件下,随着纳米粒子含量增加,摩擦系数与磨损率均出现明显降低,填充比例为5%的复合材料摩擦学性能最佳,摩擦系数整体较UHMWPE/橡胶材料降低35%,磨损率降低46.6%,磨损表面形貌也随之发生改变;随着载荷的增加,复合材料的磨损率从1.25×10-6mm3/(Nm)降至0.4×10-6mm3/(Nm)。Nano-SiC的含量与工况载荷压力对摩擦磨损均存在一定影响,即填充适量Nano-SiC的UHMWPE/橡胶复合材料与一定工况压力下的对偶钢环组成的摩擦配副能改善摩擦环境,减轻粘-滑现象,有利于减小材料的磨损。  相似文献   

6.
纳米SiO2增强尼龙摩擦学性能的影响因素研究   总被引:1,自引:0,他引:1  
使用MM-200磨损实验机在干摩擦条件下研究了偶副表面粗糙度对质量分数为10%的纳米SiO2增强尼龙1010复合材料与45号钢对磨时摩擦学性能的影响,并利用光学显微镜和扫描电子显微镜对纳米SiO2-PA1010复合材料的转移膜和磨损机理进行了观察和分析.结果表明,随着偶副表面粗糙度的增加,纳米SiO2-PA1010复合材料的摩擦系数和磨损量均呈先下降达到一个最低值后又上升的趋势.说明存在一个最佳表面粗糙度,使材料的磨损最小.本实验中这个最佳粗糙度为Ra=0.22μm.  相似文献   

7.
实验选用螺旋碳纤维(CMCs)和直碳纤维(SCF)填充改善聚四氟乙烯(PTFE)的综合性能。测试了纯PTFE及其复合材料的摩擦磨损、硬度、抗压强度等性能,并利用扫描电镜对磨损表面及残留在表面的磨屑和转移膜进行形貌观察。结果表明:添加其中任何一种碳纤维都会不同程度地提高PTFE复合材料的摩擦因数,高载下的摩擦因数稍低于低载下的摩擦因数,另外,随着碳纤维含量的增加,其耐磨性能逐步提高,磨损率下降;直纤维增强复合材料的硬度呈先增大后减小的趋势,螺旋碳纤维增强复合材料的硬度则缓慢提高,两种纤维均可使抗压强度提高,且螺旋碳纤维的效果更为明显,从断裂位移可以看出,碳纤维的添加大大改善了纯PTFE的塑性性能。  相似文献   

8.
碳纳米管/PTFE基复合材料摩擦学性能的研究   总被引:9,自引:0,他引:9  
以碳纳米管(CNTs)为填料制备了,PTFE基复合材料,并研究了,该复合材料在干摩擦条件下与不锈钢对摩时的摩擦磨损行为,实验结果表明,CNTs/PTFE复合材料的摩擦系数随着CNTs含量的增加呈降低的趋势,其耐磨性能明显优于纯PTFE,当CNTs的体积分数为15%~20%时,其抗磨性能最好,MSEM观察发现纯PTFE的断面上分布着大量的带状结构,而填充了CNTs后,则未观察到这种带状结构,这说明CNTs有效地抑制了PTFE结构的破坏,对PTFE和CNTs/PTFE复合材料的摩擦表面的SEM观察发现,前者的摩擦表面分布着较明显的犁削和粘着磨损的痕迹,而后者的摩擦表面则平整光滑,这表明以CNTs作为填料可有效地抑制PTFE的磨损。  相似文献   

9.
聚四氟乙烯填充PA1010的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
以注塑成型法制备了聚四氟乙烯(PTFE)填充PA1010复合材料,利用M-2000磨损试验机测试了该复合材料与GCr15轴承钢对摩时的摩擦磨损性能,并用扫描电子显微镜(SEM)观察了试样磨损表面形貌.结果表明:PTFE填充PA1010可显著改善尼龙复合材料的摩擦磨损性能.w(PTFE)为25%时,复合材料的摩擦学综合性能最佳.复合材料的摩擦系数和磨损体积随施加载荷、滑动速度的增加分别呈现降低和增加的趋势.在200 N载荷下,复合材料磨损主要为磨粒磨损;在400 N载荷下,磨损表现为黏着磨损和磨粒磨损共同作用.在滑动速度为0.21 m/s时,材料摩擦表面因挤压发生塑性流变,其磨损机理为磨粒磨损;在滑动速度为0.84 m/s,复合材料因热疲劳和应力疲劳发生剥层,磨损机理转变为疲劳剥层磨损.  相似文献   

10.
SiC颗粒增强PTFE基复合材料摩擦磨损特性研究   总被引:5,自引:0,他引:5  
利用冷压烧结法制备了不同含量的SiC颗粒填充聚四氟乙烯(PTFE)复合材料,采用M-200环块试验机进行摩擦磨损试验,研究了SiC颗粒增强PTFE基复合材料在干摩擦条件下的磨损特性,并利用扫描电子显微镜对复合材料的磨损表面形貌进行了观察,对复合材料的磨损机制进行了分析.结果表明:SiC颗粒增强复合材料的耐磨性能显著提高,但其摩擦系数有所增大;随SiC颗粒含量的增加复合材料的磨损机理由粘着磨损占主导逐渐转变为显微切削占主导;复合材料中增强相SiC颗粒有3种流失形式:整体脱落、磨损、碎裂.  相似文献   

11.
采用热压成型方法制备了不同质量分数氧化锌晶须(ZnOw)尼龙1010(PA1010)复合材料,对复合材料的力学性能和摩擦学性能进行了试验研究,分析了复合材料的磨损机理.结果表明,填充ZnOW可以增加尼龙的压缩强度和弹性模量;提高并稳定尼龙复合材料的摩擦系数,增强复合材料的抗磨损性能.纯尼龙随着载荷的增大摩擦系数急剧降低,磨损率上升,而复合材料的摩擦系数和磨损率受载荷的影响较小.当ZnOw质量分数达到15%时,复合材料的摩擦系数最高,磨损率最低.纯尼龙的磨损随着正压力的增加由磨粒磨损和轻微黏着磨损转变为热破坏.ZnOw/PA复合材料随着ZnOw质量分数的增加,磨损由黏着磨损,转变为犁沟、疲劳断裂和转移膜的反向转移.  相似文献   

12.
采用M-200型摩擦磨损试验机,对比研究了几种填充PTFE复合材料与石英玻璃对磨时,在水润滑、低速、较高载荷条件下的摩擦学特性。结果表明:在水润滑条件下,MoS2/PTFE复合材料与石英玻璃对磨时的摩擦系数可低于0.005,表现出超润滑摩擦特性,而且具有稳定的摩擦系数和很低的磨损率。石英玻璃所具有的优良表面特性和优异的亲水性是实现超润滑的关键。当添加高硬添料时,石英玻璃表面容易受到破坏,导致摩擦学性能下降。  相似文献   

13.
GF增强尼龙1010复合材料的磨擦学性能研究   总被引:14,自引:2,他引:12  
制备了玻璃纤维(GF)增强尼龙1010复合材料,在环一块磨损试验机上研究了复合材料的摩擦学性能。结果表明:GF含量对复合材料的摩擦学性能有显著影响,GF质量分数为35%时增强效果较好;随着滑速的增加,GF增强尼龙1010复合材料的摩擦系数和磨损量持续上升。干摩擦下的复合材料磨损以疲劳断裂和粘着为主,且纤维出现磨损、断裂及从基体中剥落的现象。在油润滑下材料向对偶产生轻微的转移,与干摩擦相比复合材料的摩擦系数和磨损量大为降低;水润滑下的尼龙以化学腐蚀磨损和磨粒磨损为主,此时复合材料摩擦系数也有较大程度的降低,但磨损量较干摩擦增大。  相似文献   

14.
研究了玻璃微珠改性PTFE复合材料的布氏硬度、压缩强度、冲击强度及摩擦、磨损性能,并借助SEM探讨了冲击断面和磨损表面的微观形态结构,对各影响因素进行了机理分析。结果表明:加入适量的玻璃微珠可以提高复合材料的硬度及抗压强度及耐磨性能;但由于存在相界面缺陷,复合材料的冲击强度降低;随着玻璃微珠质量含量的增加,磨损机理发生变化:由粘着磨损逐渐转变为磨粒磨损,摩擦系数有所增大。  相似文献   

15.
向碳纤维(CF)与聚苯酯(POB)增强超高分子量聚乙烯(UHMWPE)复合材料加入不同质量分数铜纳米颗粒,探究了加入铜纳米颗粒对复合材料的力学性能与导热性能的影响.使用扫描电子显微镜(SEM)对铜纳米颗粒改性复合材料在低温环境下时磨损微观表面进行观察.使用原子力显微镜(AFM)研究了低温环境下改性复合材料转移膜的形貌.研究表明:低温环境下该改性复合材料摩擦因数和磨损率低于室温环境下的摩擦因数和磨损率.低温环境下改性复合材料磨损机理以疲劳磨损和磨料磨损为主,加入铜纳米颗粒后形成致密且连贯的转移膜,显著降低了改性复合材料的磨损率.  相似文献   

16.
硅灰石增强铸型尼龙复合材料摩擦学行为研究   总被引:1,自引:0,他引:1  
为了改善铸型(MC)尼龙的摩擦学性能,提出了一种硅灰石表面接枝MC尼龙的表面处理方法,并制备了表面接枝MC尼龙的硅灰石填充MC尼龙复合材料,测试了其力学和摩擦学性能.结果表明:表面接枝MC尼龙硅灰石填充MC尼龙与尼龙基体具有良好的结合界面,复合材料的硬度和拉伸强度分别提高了31%和26%,复合材料的拉伸断裂伸长率下降了68%.干摩擦条件下,MC尼龙复合材料的摩擦因数随硅灰石含量的增加而升高,5%质量分数硅灰石填充MC尼龙复合材料的摩擦因数达到0.5;水润滑条件下,硅灰石对MC尼龙摩擦因数影响较小,3种材料的摩擦因数均为0.18;2种试验条件下,填充硅灰石复合材料的磨损率显著降低,耐磨性能较纯MC尼龙分别提高了5倍和2倍.MC尼龙复合材料的磨损主要为磨粒和黏着磨损.  相似文献   

17.
粘结石墨基固体润滑涂层的微动摩擦磨损性能   总被引:2,自引:0,他引:2  
为了探讨粘结石墨基固体润滑涂层的微动摩擦磨损性能的作用机理,使用SRV微动摩擦磨损试验机对粘结石墨基固体润滑涂层在微动试验条件下的摩擦学性能以及抗承载能力进行研究,对其磨痕形貌和对偶转移膜进行分析。研究结果表明:粘结石墨基固体润滑涂层的磨损率随着试验载荷和摩擦速度的增大而减小;而摩擦因数随着试验载荷增大而减小,随摩擦速度增大而缓慢增大;在微动摩擦过程中,高载高速可以促进高质量转移膜在对偶表面形成,从而使得粘结石墨基固体润滑涂层具有良好的抗承载能力和优异的抗磨减摩性能。  相似文献   

18.
稀土化合物填充PA1010复合材料的摩擦学特性   总被引:3,自引:0,他引:3  
采用热挤压注模方法制备了含不同稀土化合物如CeO2,LaF3,La2O3的尼龙1010(PA1010)复合材料。测定了复合材料的密度和硬度,在MM-200型环-块实验机上考察了其摩擦磨损性能,用光学显微镜观察了材料表面磨痕和转移膜形貌。研究结果发现,添加稀土化合物可改变PA1010的摩擦学性能,尤其是填充La2O3的PA1010复合材料的减摩、耐磨性能均最佳,PA1010的磨损主要表现为粘着、劳和逆性变形,其转移膜不连续,且有脱落现象,PA1010-15%La2O3复合材料的磨损主要为磨粒磨损,其转移膜致密光滑,薄而完整,这与其耐磨性最好的现象相一致。  相似文献   

19.
由化学镀得到的聚四氟乙稀、石墨、氟化石墨、硫化钼及氟化钙粒子等与镍磷一起沉积的五类自润滑复合镀层。在环块试验机及销盘试验机上研究了其摩擦磨损特性。得出其摩擦系数与抗磨性、试验负荷、粒子含量和镀层的热处理与否有关。与淬火GCr15和氮化过的钢相比,自润滑复合镀层具有低的摩擦系数,比之纯Hi-p镀层其摩擦系数也较低。 由AES和SEM对磨损表面进行分析,当表面的Ni-p逐步磨去时,固相润滑粒子逐步暴露。对细粒子来说(如小于2μm的PTFE)能在对磨件表面形成转移膜,降低摩擦系数,其磨损率略有提高。但如粒子过大(如大于2μm的石墨)则石墨粒子压延并抛光,或碎裂脱落,也能转移并降低摩擦,但使磨损量大为增加。  相似文献   

20.
采用碳离子束注入辅助蒸发技术在Ti6A14V球表面低温沉积了DLC薄膜,探讨了微摩擦试验过程中,对偶件UHMWPE的表面粗糙度及表面湿润性对DLC薄膜摩擦学性能的影响状况。研究发现:碳离子束注入辅助蒸发技术沉积的DLC薄膜与UHMWPE配副时,其摩擦学性能受到对偶表面粗糙度、润湿性的影响,对偶件UHMWPE表面的低粗糙度、较差润湿性有助于DLC/UHMWPE摩擦副减小摩擦系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号