首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Aluminum doped ZnO thin films (ZnO:Al) deposited on flexible substrates are suitable to be used as transparent conductive oxide (TCO) thin films in solar cells because of the excellent optical and electrical properties. TPT films are a kind of composite materials and are usually used as encapsulation material of solar panels. In this paper, ZnO:Al film was firstly deposited on transparent TPT substrate by RF magnetron sputtering. The structural, optical, and electrical properties of the film were investigated by X-ray diffractometry (XRD), scanning electron microscope (SEM), UV–visible spectrophotometer, as well as Hall Effect Measurement System. Results revealed that the obtained film had a hexagonal structure and a highly preferred orientation with the c-axis perpendicular to the substrate. Also, the film showed a high optical transmittance over 80% in the visible region and a resistivity of about 3.03 × 10? 1 Ω·cm.  相似文献   

2.
Preparation of nanocrystalline NiO thin films by sol–gel method and their hydrogen (H2) sensing properties were investigated. The thin films of NiO were successfully deposited on the glass and SiO2/Si substrate by a sol–gel coating method. The films were characterized for crystallinity, electrical properties, surface topography and optical properties as a function of calcination temperature and substrate material. It was found that the films produced by this method were polycrystalline and phase pure NiO. The H2 gas sensitivity of these films was studied as a function of H2 concentration and calcination temperature. The results indicated that the sol–gel derived NiO films could be used for the fabrication of H2 gas sensors to monitor low concentration of H2 in air quantitatively at low temperature range (< 200 °C).  相似文献   

3.
Natively textured surface aluminum doped zinc oxide (ZnO:Al) thin films were directly deposited via pulsed direct current (DC) reactive magnetron sputtering on glass substrates. During the reactive sputtering process, the oxygen gas flow rate was varied from 8.5 sccm to 11.0 sccm. The influences of oxygen flow rate on the structural, electrical and optical properties of naturally textured ZnO:Al TCO thin films with milky surface were investigated in detail. Gradual oxygen growth (GOG) technique was developed in the reactive sputtering process for textured ZnO:Al thin films. The light-scattering ability and optical transmittance of the natively textured ZnO:Al TCO thin films can be improved through gradual oxygen growth method while maintaining a low sheet resistance. Typical natively textured ZnO:Al TCO thin film with crater-like surface exhibits low sheet resistance (Rs  4 Ω), high transmittance (Ta > 85%) in visible optical region and high haze value (12.1%).  相似文献   

4.
Transparent conducting ZnO thin films doped with Al have been prepared by sol–gel method, which were characterized by X-ray diffraction, atomic force microscopy and ultra-violet spectrometer. The films showed a hexagonal wurtzite structure and high preferential c-axis orientation. The optical transmittance spectra of the films showed the transmittance higher than 85% within the visible wavelength region. A minimum resistivity of 6.2 × 10−4 Ω cm was obtained for the film doped with 1.5 mol.% Al, preheated at 300 °C for 15 min and post-heated at 530 °C for 1 h.  相似文献   

5.
In the present report synthesis of CoS thin films was carried out by a modified liquid phase chemical growth process. Dark green coloured CoS thin films with hexagonal wurtzite polycrystalline structure and average grain size of ≈ 15 nm were deposited. Surface morphology reveals a randomly oriented network of elongated thread like grains. The absorption coefficient of the CoS thin film is high (α  104–105 cm? 1) and a direct band gap of 1.13 eV has been observed. n-type conduction is found in the deposited films which can be attributed to the lack of stoichiometry.  相似文献   

6.
《Materials Research Bulletin》2013,48(11):4486-4490
Highly infrared transparent conductive ruthenium doped yttrium oxide (RYO) films were deposited on zinc sulfide and glass substrates by reactive magnetron sputtering. The structural, optical, and electrical properties of the films as a function of growth temperature were studied. It is shown that the sputtered RYO thin films are amorphous and smooth surface is obtained. The infrared transmittance of the films increases with increasing the growth temperature. RYO films maintain greater than ∼65% transmittance over a wide wavelength range from 2.5 μm to 12 μm and the highest transmittance value reaches 73.3% at ∼10 μm. With increasing growth temperature, the resistivity changed in a wide range and lowest resistivity of about 3.36 × 10−3 Ω cm is obtained at room temperature. The RYO thin films with high conductivity and transparency in IR spectral range would be suitable for infrared optical and electromagnetic shielding devices.  相似文献   

7.
《Materials Research Bulletin》2013,48(4):1468-1476
Cobalt doped SnO2 thin films were prepared by sol–gel spin coating technique and influence of dopant concentration on structural, morphological and optical properties of thin films were investigated by XRD, XPS, FTIR, SEM, AFM, PL, UV–vis, and Hall effect measurement. All samples have a tetragonal rutile structure and the grain size decreases with increasing the doping concentration. XPS results clearly showed the presence of Co2+ ions into the SnO2. The SEM and AFM images reveal that the morphology of samples was affected by dopant. Conductivity type of the films changes from n-type to p-type with increasing Co-dopant above 3 mol% and electrical resistivity increases with increasing Co content. The optical band gap gradually decreases with improved cobalt concentration from 3.91 eV to 3.70 eV. The PL measurements revealed the decrease in intensity of blue emission lines and increase in green emission when content of Co is enhanced in the thin films.  相似文献   

8.
Indium tin oxide (ITO) thin films were deposited on glass substrates by RF sputtering system at different sputtering pressure (SP) (20–34 mTorr) and room temperature. The sputtering pressure effects on the deposition rate, electro-optical and structural properties of the as-deposited films were systematically investigated. The optimum sputtering pressure of 27 mTorr, giving a good compromise between electrical conductivity and optical transmittance was found to deposit films. The films were heat-treated in vacuum (200–450 °C) and their electro-optical and structural properties investigated with temperature. A criterion factor Q, which is the ratio between the normalized average transmission to normalized resistivity was defined. It has been observed that Q has its maximum value for heat treatment at 400 °C and the X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis proves the films have preferred crystal growth towards (2 2 2) direction and average size of grains are 35–40 nm.  相似文献   

9.
《Materials Letters》2006,60(13-14):1594-1598
The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates is analyzed in this work. All the starting solutions employed were aged for 10 days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum resistivity in films ZnO:F deposited from a 0.4 M solution at 500 °C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500 °C. The obtaining of ZnO:F thin films, with a resistivity as low as 7.8 × 10 3 Ω cm (sheet resistance of 130 Ω/□ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.  相似文献   

10.
The InVO4 sol was obtained by a mild hydrothermal treatment at 150 °C for 4 h. InVO4 doped TiO2 sol had been prepared through blending InVO4 sol into TiO2 sol. Novel InVO4-TiO2 thin films on glass slides were synthesized via a sol–gel dipping method from the composite sol. The as-prepared samples were characterized by XRD, FE-SEM and UV–vis absorption spectroscopy. From the visible-light photocatalytic experimental results, it has been demonstrated that the composite film with 3.0 wt.% InVO4 content exhibits the highest visible-light photocatalytic activity. The band gap of the InVO4-TiO2 thin films with 3.0 wt.% InVO4 was estimated to be about 2.32 eV.  相似文献   

11.
《Materials Letters》2006,60(13-14):1617-1621
Cuprous oxide (Cu2O) thin films were deposited by dc reactive magnetron sputtering technique onto glass substrates by sputtering of pure copper target in a mixture of argon and oxygen gases under various oxygen partial pressures in the range 8 × 10 3–1 × 10 1 Pa at a constant substrate temperature of 473 K and a sputtering pressure of 4 Pa. The dependence of cathode potential on the oxygen partial pressure was explained in terms of cathode poisoning effect. The influence of oxygen partial pressure on the structural and optical properties of Cu2O films was systematically studied. Single phase films of Cu2O were obtained at an oxygen partial pressure of 2 × 10 2 Pa. The films formed at an oxygen partial pressure of 2 × 10 2 Pa were polycrystalline with cubic structure and exhibited an optical band gap of 2.04 eV.  相似文献   

12.
《Materials Letters》2006,60(25-26):3096-3099
P-type transparent conducting tin–indium oxide (TIO) films were successfully fabricated on quartz substrates by thermal oxidation of InSn alloy (In / Sn = 0.2) films that were deposited by magnetron sputtering at room temperature (R.T.). Structural and electrical properties of TIO films were investigated. X-ray diffraction studies showed that all TIO films were polycrystalline with an orthorhombic structure. The surface morphology of TIO films viewed by field emission scanning electron microscope (SEM) revealed that the films are composed of uniformly distributed submicron grains. Hall effect measurement results indicated that hole concentration as high as 9.61 × 1018 cm 3 was achieved. It's found that 600 °C was the optimum thermal oxidation temperature to get p-type TIO films with highest hole concentration.  相似文献   

13.
Highly oriented zinc oxide thin films have been grown on quartz, Si (1 1 1) and sapphire substrates by pulsed laser deposition (PLD). The effect of temperature and substrate parameter on structural and optical properties of ZnO thin films has been characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmission spectra and PL spectra. The experimental results show that the best crystalline thin films grown on different substrate with hexagonal wurtzite structure were achieved at growth temperature 400–500 °C. The growth temperature of ZnO thin film deposited on Si (1 1 1) substrate is lower than that of sapphire and quartz. The band gaps are increasing from 3.2 to 3.31 eV for ZnO thin film fabricated on quartz substrate at growth temperature from 100 to 600 °C. The crystalline quality and UV emission of ZnO thin film grown on sapphire substrate are significantly higher than those of other ZnO thin films grown on different substrates.  相似文献   

14.
In this work, sputtered TiC/amorphous C thin films have been developed in order to be applied as potential barrier coating for interfering of Ti ions from pure Ti or Ti alloy implants. Our experiments were based on magnetron sputtering method, because the vacuum deposition provides great flexibility for manipulating material chemistry and structure, leading to films and coatings with special properties. The films have been deposited on silicon (001) substrates with 300 nm thick oxidized silicon sublayer at 200 °C deposition temperature as model substrate. Transmission electron microscopy has been used for structural investigations. Thin films consisted of ~ 20 nm TiC columnar crystals embedded by 5 nm thin amorphous carbon matrix. MG63 osteoblast cells have been applied for in vitro study of TiC nanocomposites. The cell culture tests give strong evidence of thin films biocompatibility.  相似文献   

15.
Nanocrystalline PbS and Sn doped PbS thin films were successfully deposited on suitably cleaned glass substrate at constant room temperature, using the chemical bath deposition technique. Before, adding Sn doping content, the pure PbS thin films were deposited at room temperature for several dipping times to optimize the deposition time. After deposition, the films were also annealed at 400 °C for 1 h in air. The crystal structures of the films were determined by X-ray diffraction studies. The films were adherent to the substrate and well crystallized according to cubic structure with the preferential orientation (2 0 0). The crystallite size of the pure PbS thin films at optimized deposition time 30 min was found to be 40.4 nm, which increased with Sn content in pure PbS thin film. The surface roughness was measured by AFM studies. The band gaps of the films were determined by transmission spectra. Experiments showed that the growth parameters, doping and annealing, influenced the crystal structure, and optical properties of the films.  相似文献   

16.
Zinc oxide thin films have been obtained by pulsed laser ablation of a ZnO target in O2 ambient at a pressure of 0.13 Pa using a pulsed Nd:YAG laser. ZnO thin films deposited on Si (1 1 1) substrates were treated at annealing temperatures from 400 °C up to 800 °C after deposition. The structural and optical properties of deposited thin films have been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra, resistivity and IR absorption spectra. The results show that the obtained thin films possess good single crystalline with hexagonal structure at annealing temperature 600 °C. Two emission peaks have been observed in photoluminescence spectra. As the post-annealing temperature increase, the UV emission peaks at 368 nm is improved and the intensity of blue emission at 462 nm decreases, which corresponds to the increasing of the optical quality of ZnO film and the decreasing of Zn interstitial defect, respectively. The best optical quality for ZnO thin films emerge at post-annealing temperature 600 °C in our experiment. The measurement of resistivity also proves the decrease of defects of ZnO films. The IR absorption spectra of sample show the typical Zn–O bond bending vibration absorption at wavenumber 418 cm−1.  相似文献   

17.
《Advanced Powder Technology》2014,25(4):1319-1324
Pure and X-doped (X = Fe, Ni, and Co) PZT nanoparticles (PZT-NPs) were synthesized by a sol–gel combustion method. The structural characterization of the obtained pure and doped PZT-NPs was carried out by X-ray diffraction (XRD). The crystallite size of the prepared samples was then evaluated by the size strain plot (SSP) method using the XRD results. The average particle sizes of 30–40 nm were measured for pure and doped PZT-NPs by a particle size analyzer. For dielectric measurements, the synthesized powders were pressed into pellets and then sintered at 1250 °C for 2 h. The magnetic properties of the synthesized doped PZT-NPs were studied by a vibration sample magnetometer (VSM) and ferromagnetic behavior was observed.  相似文献   

18.
《Materials Letters》2007,61(11-12):2460-2463
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films with highly (002)-preferred orientation were deposited on glass substrates by DC reactive magnetron sputtering method in Ar + O2 ambience with different Ar/O2 ratios. The structural, electrical, and optical properties were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The resistivity and optical transmittance of the ZnO:Ga thin films are of the order of 10 4 Ω cm and over 85%, respectively. The lowest electrical resistivity of the film is found to be about 3.58 × 10 4 Ω cm. The influences of Ar/O2 gas ratios on the resistivity, Hall mobility, and carrier concentration were analyzed.  相似文献   

19.
TiO2 and TiO2:Nd thin films were deposited using reactive magnetron sputtering process from mosaic Ti–Nd targets with various Nd concentration. The thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectroscopic techniques. Photoluminescence (PL) in the near infrared obtained upon 514.5 nm excitation was also examined. The relationship between the Nd concentration, structural, optical and photoluminescence properties of prepared thin films was investigated and discussed. XRD and TEM measurements showed that an increase in the Nd concentration in the thin films hinders the crystal growth in the deposited coatings. Depending on the Nd amount in the thin films, TiO2 with the rutile, mixed rutile–amorphous or amorphous phase was obtained. Transmittance measurements revealed that addition of Nd dopant to titania matrix did not deteriorate optical transparency of the coatings, however it influenced on the position of the fundamental absorption edge and therefore on the width of optical band gap energy. All TiO2:Nd thin films exhibited PL emission that occurred at ca. 0.91, 1.09 and 1.38 μm. Finally, results obtained for deposited coatings showed that titania with the rutile structure and 1.0 at.% of Nd was the most efficient in VIS to NIR photon conversion.  相似文献   

20.
Cadmium sulfide (CdS) films are used in solar cells, sensors and microelectronics. A variety of techniques, such as vapor based techniques, wet chemical methods and spray pyrolysis are frequently employed to develop adherent CdS films. In the present study, rapid deposition of CdS thin films via plasma spray route using a solution precursor was investigated, for the first time. Solution precursor comprising cadmium chloride, thiourea and distilled water was fed into a DC plasma jet via an axial atomizer to create ultrafine droplets for instantaneous and accelerated thermal decomposition in the plasma plume. The resulting molten/semi-molten ultrafine/nanoparticles of CdS eventually propel toward the substrate to form continuous CdS films. The chemistry of the solution precursor was found to be critical in plasma pyrolysis to control the stoichiometry and composition of the films. X-ray diffraction studies confirmed hexagonal α-CdS structure. Surface morphology and microstructures were investigated to compare with other synthesis techniques in terms of process mechanism and structural features. Transmission electron microscopy studies revealed nanostructures in the atomized particulates. Optical measurements indicated a decreasing transmittance in the visible light with increasing the film thickness and band gap was calculated to be ~2.5 eV. The electrical resistivity of the films (0.243 ± 0.188 × 105 Ω cm) was comparable with the literature values. These nanostructured polycrystalline CdS films could be useful in sensing and solar applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号