首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectroscopic property and energy transfer processes of singly doped and codoped Er3+ and Nd3+ fluoroaluminate glasses with low phosphate content are systematically analyzed. The absorption spectra of these glasses are tested, and the Judd–Ofelt (J–O) and radiative parameters are discussed based on J–O theory and the parameters changes substantially because of the other codoping ions. As for Nd3+: the main emission bands at 0.9 and 1.05 μm decrease in the codoped sample under the excitation of an 800 nm laser diode from the emission spectra because the Er3+: 4I11/2 level reduces the Nd3+: 4F3/2 level effectively through the energy transfer process Nd3+: 4F3/2  Er3+: 4I11/2. For Er3+, the emission at 1.5 μm is restrained by codoping with Nd3+ ions from the energy transfer process Er3+: 4I13/2  Nd3+: 4I15/2. The emission at 2.7 μm is enhanced because the Nd3+ ions deplete the lower level and exert a positive effect on the upper laser level. The microparameters of the energy transfer between the Er3+ and Nd3+ ions are calculated and discussed using Forster–Dexter theory. The energy transfer efficiencies of the Nd3+: 4F3/2 to the Er3+: 4I11/2 and the Er3+: 4I13/2 to the Nd3+: 4I15/2 are 28.8% and 74.5%, respectively. These results indicate that Nd3+ can be an efficient sensitizer for Er3+ to obtain Mid-infrared (Mid-IR) emission and the codoped Er3+/Nd3+ fluoroaluminate glass with low phosphate content is suitable to be used as the fiber optical gain media for 2.7 μm laser generation.  相似文献   

2.
《Materials Research Bulletin》2013,48(11):4733-4737
This study investigates the emission properties of the Er3+/Nd3+ ions codoped 70GeS2–10In2S3–20CsBr chalcohalide glasses. The vacuumed melt-quenching technique is employed to synthesize the glasses. The absorption spectra, upconversion and near-IR emission spectra as well as fluorescence decay curves are collected. With the increasing concentration of Er3+ ions, the lifetimes at 1073 nm for Nd3+ ions decrease from 538 to 420 μs under 808 nm excitation. Meanwhile, the lifetimes at 1540 nm for Er3+ ions decrease from 245 to 214 μs with the increasing concentration of Nd3+ ions. The emission spectra and lifetimes show that energy transfer exists between the Nd3+ and Er3+ ions. The luminescence and detailed energy transfer mechanisms are schematically proposed.  相似文献   

3.
An Er3+/Nd3+ co-doped LiYF4 single crystal of ~Φ 12 mm × 95 mm size with high quality was grown by a Bridgman method. The luminescent properties of the crystals with different Er3+ and Nd3+ concentrations were studied. Compared with the Er3+ single-doped LiYF4 crystal extremely enhanced emission at 2.7 μm from the Er3+/Nd3+ co-doped LiYF4 was observed upon excitation of an 800 nm laser diode. Meanwhile, the green up-conversion emission and near infrared emission at 1.5 μm from Er3+ in the co-doped crystals were effectively restricted. The luminescent mechanisms for the Er3+/Nd3+ co-doped crystals were analyzed and the possible energy transfer processes were proposed. The energy transfer efficiencies for (Er3+:4I13/2, Nd3+:4I9/2)  (Er3+:4I15/2, Nd3+:4I15/2) and (Nd3+:4F3/2, Er3+:4I15/2)  (Nd3+:4I9/2, Er3+:4I9/2) were calculated. It was found that Er3+/Nd3+ co-doped single crystal may be a potential host for 2.7 μm lasers.  相似文献   

4.
Nd 1% doped complex garnet scintillators were prepared by Furukawa and their optical and scintillation properties were investigated on a comparison with previously reported Nd-doped YAG. Chemical compositions of newly developed complex garnets were Lu2Y1Al5O12, Lu2Y1Ga3Al2O12, Lu2Gd1Al5O12, Lu2Gd1Ga3Al2O12, Gd1Y2Al5O12, Gd1Y2Ga3Al2O12, and Gd3Ga3Al2O12. They all showed 50–80% transmittance from ultraviolet to near infrared wavelengths with several absorption bands due to Gd3+ or Nd3+ 4f–4f transition. In X-ray induced radioluminescence spectra, all samples exhibited intense lines at 310 nm due to Gd3+ or 400 nm due to Nd3+ depending on their chemical composition. Among them, the highest scintillation light yield was achieved by Lu2Y1Al5O12. Typical scintillation decay times of them resulted 1.5–3 μs. Thermally stimulated glow curve after 1 Gy exposure and X-ray induced afterglow were also investigated.  相似文献   

5.
The Er3+-doped Al2O3 powders have been prepared by the non-aqueous sol–gel method using the aluminum isopropoxide as precursor, acetylacetone as chelating agent, nitric acid as catalyzer, and hydrated erbium nitrate, as dopant under isopropanol environment. The phase structure and phase transition of the Er3+-doped Al2O3 powders were investigated by using thermogravimetry/differential thermal analysis (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The phase contents diagram for the Er-doped Al–O system with the doping concentration up to 5 mol% was described at the sintering temperature from 550 to 1250 °C. There were the three crystalline types of Er3+-doped Al2O3 phases, γ-, θ- and α-(Al, Er)2O3, and the two relative stoichiometric compounds composed of Al, Er, and O, ErAlO3 and Al10Er6O24 phases in the Er–Al–O phase contents diagram. The Er3+ doping suppressed crystallization of the γ and θ phases and delayed phase transition of the γ  θ and θ  α. The increased Er3+ doping concentration and the elevated sintering temperature enhanced the precipitation of the ErAlO3 and Al10Er6O24 phases. The preparation procedure for the Er3+-doped Al2O3 powders in the non-aqueous sol–gel process, including chelating, hydrolysis, peptization, doping and gelation, has a significant effect on the phase formation and its transition for the Er3+-doped Al2O3 powders.  相似文献   

6.
《Optical Materials》2005,27(3):475-479
Optical spectroscopy of the green emission of erbium in KGd(WO4)2 (KGW) single crystals codoped with ytterbium ions is investigated. To do this, we firstly grew good-optical-quality KGW single crystals doped with Er3+ and Yb3+ at several dopant concentrations by the Top-seeded-solution-growth slow-cooling method (TSSG). Green photoluminescence of Er3+ in KGW host was studied at room temperature (RT) and low temperature (10 K) by means of Yb3+ sensitization after infrared excitation at 981 nm (10194 cm−1). We calculated the emission and gain cross-sections and compared these with those of other known Er3+-doped laser materials like LiYF4 :Er (YLF:Er) and Y3Al5O12:Er (YAG:Er) at RT. Our study also focused on determining the optimal concentration of ions for generating the most intense green emission. We measured the lifetime of the green emission after infrared pump at several Yb3+ concentrations. From the low-temperature emission experiments, we determined the energy position of the sublevels of the ground state of erbium.  相似文献   

7.
《Optical Materials》2014,36(12):2290-2295
In this paper, we investigate the spectroscopic properties of and energy transfer processes in Er–Tm co-doped bismuth silicate glass. The Judd–Ofelt parameters of Er3+ and Tm3+ are calculated, and the similar values indicate that the local environments of these two kinds of rare earth ions are almost the same. When the samples are pumped at 980 nm, the emission intensity ratio of Tm:3F4  3H6 to Er:4I13/2  4I15/2 increases with increased Er3+ and Tm3+ contents, indicating energy transfer from Er:4I13/2 to Tm:3F4. When the samples are pumped at 800 nm, the emission intensity ratio of Er:4I13/2  4I15/2 to Tm:3H4  3F4 increases with increased Tm2O3 concentration, indicating energy transfer from Tm:3H4 to Er:4I13/2. The rate equations are given to explain the variations. The microscopic and macroscopic energy transfer parameters are calculated, and the values of energy transfer from Er:4I13/2 to Tm:3F4 are found to be higher than those of the other processes. For the Tm singly-doped glass pumped at 800 nm and Er–Tm co-doped glass pumped at 980 nm, the pumping rate needed to realize population reversion is calculated. The result shows that when the Er2O3 doping level is high, pumping the co-doped glass by a 980 nm laser is an effective way of obtaining a low-threshold ∼2 μm gain.  相似文献   

8.
《Optical Materials》2014,36(12):2400-2404
Erbium doped tellurite glasses (TeO2 + Li2O + TiO2) were prepared by conventional melt-quenching method to study the influence of the Er3+ concentration on the luminescence quantum efficiency (η) at 1.5 μm. Absorption and luminescence data were used to characterize the samples, and the η parameter was measured using the well-known thermal lens spectroscopy. For low Er3+ concentration, the measured values are around 76%, and the concentration behavior of η shows Er–Er and Er–OH interactions, which agreed with the measured lifetime values.  相似文献   

9.
Highly uniform SrF2 and SrF2:Ln3+ (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microspheres assembled by 2D nanoplates have been successfully synthesized by a facile and friendly hydrothermal route. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the samples. The experimental results indicate that reaction time and chelating reagent play a key role in forming the hierarchical microspheres. The formation mechanism was proposed based on the evolution of this morphology as a function of hydrothermal time. The near-infrared luminescence of lanthanide ions (Er, Nd, and Yb) doped SrF2 microspheres were discussed in detail. In addition, the as-obtained SrF2:Eu3+ sample exhibits orange-red emission centered at 590 nm under excitation at 393 nm, while the SrF2:Tb3+ exhibits a strong green emission at 540 nm. The as-synthesized SrF2:Ln3+ luminescent microspheres might find some potential applications in areas of photoluminescence, telecommunication and laser emission.  相似文献   

10.
In this work, we present the spectroscopic properties of KY3F10 nanocrystals activated with erbium and codoped with ytterbium ions. The most important processes that lead to the erbium upconversion of green and red emissions of Er3+ were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays of 4S3/2 and 4F9/2 excited levels of Er3+ and to determine the upconversion processes and the luminescence efficiencies of erbium in the visible. Analysis of the luminescence kinetics in Yb:Er:KY3F10 shows a rapid upconversion (Up1) for the green emission with a time constant of 0.31 μs after pulsed laser excitation at 972 nm for as synthesized nanocrystals, which is faster than the time constant measured for the bulk crystal (23 μs). In addition, it is observed a second upconversion process (non-resonant) (Up2) responsible for the red emission (Er3+), which competes with Up1 process. However, the luminescence efficiency of the green emission (4S3/2) is observed to be very low (1.6%) for the as synthesized nanocrystal (25 °C). Nevertheless, it increases with the nanopowder heat treatment reaching an efficiency of 99% (T = 550 °C) relative to the bulk crystal. Similar luminescence behavior was observed for the 4F9/2 level (Er3+) that emits red emission. X-ray diffraction analysis of nanopowder by Rietveld method reveled that the mean crystallite size remains unchanged (8.3–12.3 nm) after thermal treatments with T  400 °C, while the 4S3/2 luminescence efficiency strongly increases to 20%. The luminescence dynamics indicates that Er3+ ions distribution plays a determinant role in the luminescence efficiency of green and red emissions of Er3+ besides also the strong influence on the upconversions processes. The observed luminescence effect is caused by the non-uniform Er3+ (and Yb3+) ions distribution due to the nanocrystal grown, which introduces a concentration gradient that increases towards the nanoparticle surface. This concentration effect produces strong (Er × Er) cross-relaxations depleting the excited states populations of 4S3/2 and 4F9/2 levels and their luminescence efficiencies in KY3F10 nanocrystals. The concentration gradient is very accentuated in the as synthesized nanocrystal and gradually decreases with the thermal treatments where the dopant ions can migrate through the lattice towards the nanocrystal’s interior to get a more uniform and random distribution, which is reached after heat treatment to T = 550 °C.  相似文献   

11.
The luminescence and scintillation properties of SrI2:0.5%Yb2+ have been investigated. SrI2:Yb single crystals were grown by the vertical Bridgeman method from the melt. They showed a light yield of 38,400 ph/MeV and energy resolution of 12.5% for the 662 keV full absorption peak. Yb2+ photoluminescence intensity and decay time were studied between 78 and 600 K. Two emission bands centered at 418 and 446 nm were observed and ascribed to spin-allowed and spin-forbidden Yb2+ 5d-4f transitions, respectively. Their corresponding room-temperature decay time constants are 710 ns and 77 μs. Both, the emission intensities and the decay time constants vary with temperature. The obtained results were interpreted using a model of self-absorption of Yb2+ emission and a model of non-radiative relaxation of the electron from the low spin to the high spin 4f135d Yb2+ excited states. The radiative lifetime of the low spin Yb2+ excited state was determined as 400 ns.  相似文献   

12.
In this study, we have synthesized scintillation materials based on Ce-doped Cs2ZnCl4 crystals. The light yield was enhanced by up to 20% by doping Cs2ZnCl4 with Ce3+ ions. In the scintillation time profiles, fast components exhibited decay time constants on the order of nanoseconds, which was ascribed to Auger-free luminescence (AFL). The light yield of the AFL component decreased at 10 mol% Ce3+ concentration, which is mainly attributed to the reabsorption of AFL photons inside the crystals by Ce3+ ions, as seen in the scintillation spectra. Long components had decay time constants of approximately 30 ns. In addition, at 10 mol% Ce3+ concentration, a prominent band appeared at approximately 500 nm in the scintillation spectrum, which was not observed in the photoluminescence spectra. The long components in the scintillation time profiles and the 500 nm band in the scintillation spectra were tentatively attributed to self-trapped excitons perturbed by Ce3+ ions.  相似文献   

13.
《Optical Materials》2014,36(12):2527-2530
Rare earth doped glass–ceramics transparent in the infrared region up to 16 μm have been prepared and studied. The enhancement of the emission of Er3+ ions at 1.54 μm with increasing crystallinity was demonstrated in a selenium-based glass–ceramic having a composition of 80GeSe2–20Ga2Se3 + 1000 ppm Er. The optical transmission, microstructure and luminescence properties of a base glass and glass–ceramics were investigated. Luminescence intensities up to 7 times greater were obtained in glass–ceramics in comparison to the base glass. These materials are promising candidates for the production of new laser sources in the mid-infrared region.  相似文献   

14.
《Optical Materials》2013,35(12):2050-2054
Multicomponent telluride-tungstate glasses containing Nd3+ and Er3+ ions were studied experimentally at 77 and 293 K using spectroscopic methods. The Judd–Ofelt intensity parameters were derived from the absorption spectra and used to calculate the radiative lifetimes and branching ratios. The quantum efficiency η = 0.95 of the 4F3/2 level of Nd3+ ion is higher than the typical value of other tellurite-based glasses. For low concentration of Er3+ ions, the luminescence decay of the 4S3/2 and 4I11/2 levels is governed by radiative transitions and multiphonon relaxation involving the Te-O highest energy vibrations.  相似文献   

15.
《Materials Research Bulletin》2006,41(8):1496-1502
The frequency upconversion properties of Er3+/Yb3+-codoped heavy metal oxide lead–germanium–bismuth oxide glasses under 975 nm excitation are investigated. Intense green and red emission bands centered at 536, 556 and 672 nm, corresponding to the 2H11/2  4I15/2, 4S3/2  4I15/2 and 4F9/2  4I15/2 transitions of Er3+, respectively, were simultaneously observed at room temperature. The influences of PbO on upconversion intensity for the green (536 and 556 nm) and red (672 nm) emissions were compared and discussed. The optimized rare earth doping ratio of Er3+ and Yb3+ is 1:5 for these glasses, which results in the stronger upconversion fluorescence intensities. The dependence of intensities of upconversion emission on excitation power and possible upconversion mechanisms were evaluated and analyzed. The structure of glass has been investigated by means of infrared (IR) spectral analysis. The results indicate that the Er3+/Yb3+-codoped heavy metal oxide lead–germanium–bismuth oxide glasses may be a potential materials for developing upconversion fiber optic devices.  相似文献   

16.
The metallic silver nanoparticles (NPs) was introduced into the Er3+/Ce3+/Yb3+ tri-doped tellurite glasses with composition TeO2–ZnO–La2O3 to improve the 1.53 μm band fluorescence. The UV/Vis/NIR absorption spectra, 1.53 μm band fluorescence spectra, fluorescence lifetimes, X-ray diffraction (XRD) curves, differential scanning calorimeter (DSC) curves and transmission electron microscopy (TEM) image of tri-doped tellurite glasses were measured, together with the Judd–Ofelt intensity parameters, emission cross-sections, absorption cross-sections and radiative quantum efficiencies were calculated to investigate the effects of silver NPs on the 1.53 μm band spectroscopic properties of Er3+ ions, structural nature and thermal stability of glass hosts. It is shown that Er3+/Ce3+/Yb3+ tri-doped tellurite glasses can emit intense 1.53 μm band fluorescence through the combined energy transfer (ET) processes from Yb3+ to Er3+ ions and Er3+ to Ce3+ ions under the 980 nm excitation. At the same time, the introduction of an appropriate amount of silver NPs can further improve the 1.53 μm band fluorescence owing to the enhanced local electric field effect induced by localized surface Plasmon resonance (LSPR) of silver NPs and the possible energy transfer from silver NPs to Er3+ ions, and an improvement by about 120% of fluorescence intensity is found in the studied Er3+/Ce3+/Yb3+ tri-doped tellurite glass containing 0.5 mol% amount of silver NPs with average diameter of ∼15 nm. The energy transfer mechanisms from Yb3+ to Er3+ ions and Er3+ to Ce3+ ions were also quantitatively investigated by calculating energy transfer microparameters and phonon contribution ratios. Furthermore, the thermal stability of glass host increases slightly with the introduction of silver NPs while the glass structure maintains the amorphous nature. The results indicate that the prepared Er3+/Ce3+/Yb3+ tri-doped tellurite glass with an appropriate amount of silver NPs is an excellent gain medium applied for 1.53 μm band EDFA pumped with a 980 nm laser diode (LD).  相似文献   

17.
Eu3+, Er3+ and Yb3+ co-doped BaGd2(MoO4)4 two-color emission phosphor was synthesized by the high temperature solid-state method. The structure of the sample was characterized by XRD, and its luminescence properties were investigated in detail. Under the excitation of 395 nm ultraviolet light, the BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphor emitted an intense red light at 595 and 614 nm, which can be attributed to 5D0  7F1 and 5D0  7F2 transitions of Eu3+, respectively. The phosphor will also show bright green light under 980 nm infrared light excitation. The green emission peaks centred at 529 and 552 nm, were attributed to 4H11/2  4I15/2 and 4S3/2  4I15/2 transitions of Er3+, respectively. It indicated that the two-color emission can be achieved from the same BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ host system based on the different pumping source, 395 nm UV light and 980 nm infrared light, respectively. The obtained results showed that this kind of phosphor may be potential in the field of multi-color fluorescence imaging and anti-counterfeiting.  相似文献   

18.
《Optical Materials》2014,36(12):2314-2319
Undoped and Er3+-doped Sr3Yb2(BO3)4 crystals were grown by the Czochralski method. Room temperature polarized spectral properties of the Er:Sr3Yb2(BO3)4 crystal were investigated. The efficiency of the energy transfer from Yb3+ to Er3+ ions in this crystal was calculated to be about 95%. End-pumped by a diode laser at 970 nm in a hemispherical cavity, a 0.75 W quasi-CW laser at 1.5–1.6 μm with a slope efficiency of 7% and an absorbed pump threshold of 3.8 W was achieved in a 0.5-mm-thick Z-cut crystal glued on a 5-mm-thick pure YAG crystal with UV-curable adhesive.  相似文献   

19.
《Optical Materials》2014,36(12):2217-2219
Er3+/Yb3+ doped phosphate glasses were prepared by high-temperature melting method. Under 975 nm excitation, the intensity of the visible light in the sample doped with TiO2 is weaker compared to that of the sample un-doped with TiO2 However, the intensity of the 1540 nm emission in the sample doped with TiO2 is stronger than that in the sample un-doped with TiO2 The sample can efficiently improve the 1540 nm emission by absorbing visible light.  相似文献   

20.
Spectroscopic parameters of a novel Nd3+-activated barium borate (BBONd) glass have been analyzed for broadband laser amplification. The Judd–Ofelt (JO) intensity parameters were determined through a systematic analysis of the absorption spectrum of Nd3+ ions in the BBONd glass. High values of the JO intensity parameters reveal a great centro-symmetrical loss of the Nd3+ sites and high covalency degree of the ligand field. The very high Ω6 intensity parameter value makes evident both a great structural distortion of the Nd3+ sites and a strong electron–phonon coupling between Nd3+ and free OH ions, which is consistent with the phonon energy maximum (3442.1 cm−1) recorded by Raman spectroscopy. This strong electron–phonon coupling favors high effective bandwidth and gain bandwidth values of the laser emission (4F3/2  4I11/2) of Nd3+ ions. The electric-dipole oscillator strengths of all the Nd3+ absorption transitions, and in particular that of the hypersensitive transition (4I9/2  4G5/2), are enhanced by this great structural distortion of the host. Broadband laser amplification of the 4F3/2  4I11/2 emission (1062 nm) of Nd3+ ions in the BBONd glass pumped at 805 nm (4I9/2  4F5/2 + 2H9/2) is evaluated through the main fluorescent parameters in competition with non-radiative processes. In general, the BBONd glass exhibits spectroscopic parameters comparable with those reported in the literature for broadband laser amplification into the IR region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号