首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A high-performance liquid chromatographic method for the determination of DRF-2189, using troglitazone as internal standard, is described. A dichloromethane-ethyl acetate solvent mixture (6:4, v/v) was used as the extraction solvent. A Kromasil C18 column with a mobile phase consisting of 0.05 M phosphate buffer-acetonitrile-methanol (22.5:37.5:40) (pH 5.0) was used at a flow-rate of 1.0 ml/min. The eluate was monitored by using fluorescence detection with excitation and emission wavelengths at 292 nm and 325 nm, respectively. Ratio of peak area of analyte to internal standard was used for quantification of plasma samples. Using this method, the absolute recovery of DRF-2189 from rat plasma was >95% and the limit of quantitation was 50 ng/ml. The intra-day relative standard deviation (R.S.D.) ranged from 1.74 to 7.24% at 1 microg/ml and 1.86 to 3.83% at 10 microg/ml. The inter-day R.S.D.s were 8.34 and 4.91% at 1 and 10 microg/ml, respectively. The method was applied to measure plasma concentrations of DRF-2189 in pharmacokinetic studies in Wistar rats.  相似文献   

2.
The development and validation of a high-performance liquid chromatographic (HPLC) assay for determination of busulfan concentrations in human plasma for pharmacokinetic studies is described. Plasma samples containing busulfan and 1,6-bis(methanesulfonyloxy)hexane, and internal standard, were prepared by derivatization with sodium diethyldithiocarbamate (DDTC) followed by addition of methanol and extraction with ethyl acetate. The extract was dried under nitrogen and the samples reconstituted with 100 microl of methanol prior to HPLC determination. Chromatography was accomplished using a Waters NovaPak octadecylsilyl (ODS) (150 x 3.9 mm I.D.) analytical column, NovaPak ODS guard column, and mobile phase of methanol-water (80:20, v/v) at a flow-rate of 0.8 ml/min with UV detection at 251 nm. The limit of detection was 0.0200 microg/ml (signal-to-noise ratio of 6) with a limit of quantitation (LOQ) of 0.0600 microg/ml for busulfan in plasma. Calibration curves were linear from 0.0600 to 3.00 microg/ml in plasma (500 microl) using a 1/y weighting scheme. Precision of the assay, as represented by C.V. of the observed peak area ratio values, ranged from 4.41 to 13.5% (13.5% at LOQ). No day-to-day variability was observed in predicted concentration values and the bias was low for all concentrations evaluated (bias: 0 to 4.76%; LOQ: 2.91%). The mean derivatization and extraction yield observed for busulfan in plasma at 0.200, 1.20 and 2.00 microg/ml was 98.5% (range 93.4 to 107%). Plasma samples containing potential busulfan metabolites and co-administered drugs, which may be present in clinical samples, provided no response indicating this assay procedure is selective for busulfan. This method was used to analyze plasma concentrations following administration of a 1 mg/kg oral busulfan dose.  相似文献   

3.
A high-performance liquid chromatogaphic method was developed for determining the concentrations of ticarcillin (TIPC) epimers in human plasma and urine. Samples were prepared for HPLC analysis with a solid-phase extraction method and the concentrations of TIPC epimers were determined using reversed-phase HPLC. The mobile phase was a mixture of 0.005 M phosphate buffer (pH 7.0) and methanol (12:1, v/v) with a flow-rate of 1.0 ml/min. TIPC epimers were detected at 254 nm. Baseline separation of the two epimers was observed for both plasma and urine samples with a detection limit of ca. 1 microg/ml with a S/N ratio of 3. No peaks interfering with either of the TIPC epimers were observed on the HPLC chromatograms for blank plasma and urine. The recovery was more than 80% for both plasma and urine samples. C.V. values for intra- and inter-day variabilities were 0.9-2.1 and 1.1-6.4%, respectively, at concentrations ranging between 5 and 200 microg/ml. The present method was used to determine the concentrations of TIPC epimers in plasma and urine following intravenous injection of TIPC to a human volunteer. It was found that both epimers were actively secreted into urine and that the secretion of TIPC was not stereoselective. Plasma protein binding was also measured, which revealed stereoselective binding of TIPC in human plasma.  相似文献   

4.
A reliable reversed-phase high-performance liquid chromatographic method has been developed for the determination of bromocriptine (BCT) in plasma and eye tissues. The BCT and propranolol, added as an internal standard (I.S.), were extracted by a liquid-liquid technique followed by an aqueous back-extraction, allowing injection of an aqueous solvent into a 4-microm Nova-Pak C18 column (150x3.9 mm I.D.). The mobile phase was a mixture of 30 parts of acetonitrile and 70 parts of 0.2% triethylamine (pH 3) at a flow-rate of 1 ml/min. Fluorescence detection was at an excitation wavelength of 330 nm and an emission wavelength of 405 nm. The retention times of I.S. and BCT were 4.1 and 11.6 min, respectively. The calibration curve was linear over the concentration range 0.2-10 microg/l for plasma (r>0.999) and vitreous humour (r>0.997) and 1-50 microg/l for aqueous humour (r>0.985). The limit of quantification was 0.2 microg/l for plasma and vitreous humour using a 1-ml sample and was 1 microg/l for aqueous humour using a 0.2-ml sample. The quality control samples were reproducible with acceptable accuracy and precision. The within-day recovery (n=3) was 100-102% for plasma, 91-106% for aqueous humour and 96-111% for vitreous humour. The between-day recovery (n=9) was 90-114% for plasma, 83-115% for aqueous humour and 90-105% for vitreous humour. The within-day precision (n=3) and the between-day precision (n=9) were 1.7-7.0% and 8.1-13.6%, respectively. No interferences from endogenous substances were observed. Taken together, the above simple, sensitive and reproducible high-performance liquid chromatography assay method was suitable for the determination of BCT in plasma and eye tissues following ocular application of BCT for the therapy of myopia.  相似文献   

5.
A radioimmunoassay is presented which employs 125I-labelled synthetic secretin, antibody against synthetic secretin, and standards prepared from pure natural porcine secretin. Secretin to be measured was extracted into methanol from heparinized plasma containing aprotinin, which together with cysteine hydrochloride was used as stabilizer throughout the assay. With polyethylene glycol separation, a within assay precision of 10% at 17 pmol/1 was found. The between assay precision was 15% at 17 pmol/1 and thelimit of detection 2.5 pmol/1 plasma. Accuracy was 70-85%. The immunoreactive secretin levels in human plasma increased from 4.5+/-0.5 pmol/1 (mean+/-S.E.M.) to 19.5+/-7.5 pmol/1 (mean+/-S.E.M.) after duodenal acidification (n=5). Pancreatic flow rate increased from 0.5+/-0.1 ml/min (mean+/-S.E.M.) to 4.8+/-0.5 ml/min (mean+/-S.E.M.), and bicarbonate output from 9.6+/-1.8 mumol/min (mean+/-S.E.M.) to 268+/-51 mumol/min (mean+/-S.E.M.) after duodenal acidification.  相似文献   

6.
An isocratic high-performance liquid chromatographic method with ultraviolet detection was utilized for the investigation of the pharmacokinetics of naringenin and its glucuronide conjugate in rat plasma and brain tissue. Plasma and brain tissue were deproteinized by acetonitrile, then centrifuged for sample clean-up. The drugs were separated by a reversed-phase C18 column with a mobile phase consisting of acetonitrile-orthophosphoric acid solution (pH 2.5-2.8) (36:64, v/v). The detection limits of naringenin in rat plasma and brain tissue were 50 ng/ml and 0.4 microg/g, respectively. The glucuronide conjugate of naringenin was evaluated by the deconjugated enzyme beta-glucuronidase. The naringenin conjugation ratios in rat plasma and brain tissue were 0.86 and 0.22, respectively, 10 min after naringenin (20 mg/kg, i.v.) administration. The mean naringenin conjugation ratio in plasma was approximately four fold that in brain tissue.  相似文献   

7.
A high-performance liquid chromatographic method was developed for the determination of a new antiulcer agent, YJA-20379-2, in human plasma and urine. The sample preparation was simple: 2.5-volume of acetonitrile was added to the biological sample to deproteinize. A 50-microliter aliquot of the supernatant was injected onto a C18 reversed-phase column. The mobile phase employed was methanol-0.1M S?rensen phosphate buffer of pH 7.0-H2O (75:2:25, v/v/v), and was run at a flow-rate of 1.0 ml/min. The column effluent was monitored by ultraviolet detector at 295 nm. The retention time for YJA-20379-2 was approximately 7.0 min. The detection limits for YJA-20379-2 in human plasma and urine were both 100 ng/ml. The coefficients of variation of the assay (within-day and between-day) were generally low (below 9.16%) for both the human plasma and urine. No interference from endogenous substances was found.  相似文献   

8.
This study describes a HPLC method to determine the concentrations of acetylsalicylic acid (ASA) and salicylic acid (SA) in human stratum corneum and in plasma. The stratum corneum layers for ASA/SA analysis were removed from three patients with postherpetic hyperalgesia treated with topical and oral aspirin. Blood samples were also collected from the same patients. Tape strippings were placed in acetonitrile and sonicated for 15 min. After centrifuging, aliquots of the supernatant were injected into the chromatograph. ASA and SA from plasma samples were extracted on Isolute C8 columns. Due to interfering peaks in the tape samples, HPLC conditions were slightly different for tape and plasma samples. ASA and SA were separated on a LiChrospher 100 RP-18 column at 1 ml/min using a water-phosphate buffer (pH 2.5)-acetonitrile mobile phase (35:40:25, v/v/v). A linear response to quantities of ASA from 0.1 to 100 microg/cm2 and of SA from 0.1 to 5 microg/cm2 in tape and to quantities of ASA 0.1 to 2 microg/ml and 1 to 50 microg/ml was obtained and the recovery from tape and plasma samples was over 98%. The method is sensitive (0.1 microg/cm2) and specific enough to allow the determination of the drugs in the skin not only after topical but also after oral administration. A good sensitivity was also obtained in plasma (0.1 microg/ml) allowing study of the kinetics of ASA and SA in plasma after oral administration. Concentrations of ASA after topical administration were 100-200 times higher than after oral administration. Plasma levels of ASA and SA after oral administration were similar to those previously found. No ASA or SA were detected in plasma after topical ASA administration.  相似文献   

9.
A reversed-phase high-performance liquid chromatographic method using acetonitrile-methanol-1 M perchloric acid-water (25:9:0.8:95, v/v/v) at a flow-rate of 1.0 ml min(-1) on LiChrospher 100 RP 18 column (250 x 4 mm; 5 microm) with UV (254 nm) detection has been developed for the determination of sulfalene in plasma and blood cells after oral administration of the antimalarial drug metakelfin. Calibration curves were linear in the range 0.5-100 microg ml(-1). The limit of quantification was 50 ng ml(-1). Within-day and day-to-day coefficients of variation averaged 3.84 and 5.31%, respectively. Mean extraction recoveries of sulfalene from plasma and blood cells were 87.21 and 84.65%, respectively. Mean concentrations of sulfalene in plasma of P. falciparum cases on days 2, 7 and 15 were 44.58, 14.90 and 1.70 microg ml(-1), respectively; in blood cells concentrations of sulfalene were 7.77, 3.25 and 0.75 microg ml(-1), respectively, after oral treatment with two tablets (1000 mg) of metakelfin. Significant difference was recorded on day 2 for sulfalene concentration in blood cells of healthy and P. falciparum cases (t=9.49; P<0.001).  相似文献   

10.
The in vivo pharmacological profile of SK&F 106760 [N alpha-acetyl-cyclo(S,S)-cysteinyl-N alpha-methylarginyl-glycyl-aspartyl-penicillamine-amide], a novel, potent glycoprotein IIb/IIIa (GPIIb/IIIa) antagonist has been investigated. In conscious dogs, SK&F 106760 (0.3-3 mg/kg i.v.) produced a dose-related inhibition of ex vivo whole blood platelet aggregation induced by collagen (5 micrograms/ml) with complete inhibition being produced for 5, 90 and 165 min after administration of 0.3, 1 and 3 mg/kg i.v., respectively. Plasma levels of SK&F 106760 were measured by high-performance liquid chromatography after i.v. bolus administration of 1 mg/kg. An initial alpha-disposition phase with a T1/2 of 11 +/- 6 min was followed by a longer terminal beta-elimination phase with a T1/2 of 66 +/- 12 min, which accounted for 79 +/- 9% of the total area under the plasma concentration-time curve. The apparent steady-state volume of distribution was 259 +/- 26 ml/kg and the plasma clearance was 3.4 +/- 0.8 ml/min/kg. The plasma concentration of SK&F 106760 at which collagen-induced ex vivo whole blood aggregation was inhibited by 50% was estimated to be 593 +/- 52 nM. After intraduodenal and intrajejunal administration of 3 mg/kg, SK&F 106760 had a bioavailability of 3 to 6% and produced a peak inhibition of ex vivo platelet aggregation of 40 to 50%. In anesthetized dogs, SK&F 106760 (0.3-3.0 mg/kg i.v.) produced a complete inhibition of platelet-dependent coronary artery thrombosis, with a dose-related duration of action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
(S)-alpha-Amino-5-phosphonomethyl[1,1'-biphenyl]-3-propanoic acid (EAB 515, I), a competitive antagonist of the N-methyl-D-aspartate receptor, has significant pharmacological activity in the central nervous system (CNS). An extremely sensitive and selective analytical method was developed for the simultaneous analysis of I and its hydroxylated analog (RDC, II) in the microdialysate (MD) and plasma ultrafiltrate (UF) of rats. Microdialysis was used for in vivo sampling of unbound drug in the CSF, cortical extracellular fluid and in the blood of freely moving rats. Compound II was used for retrodialysis-based in vivo calibration of microdialysis probes to estimate the recovery of I. Compound I, being extremely hydrophilic with a high degree of ionization at the physiological pH of 7.4, has limited access to the brain regions. This, combined with its low microdialysis recovery, made the estimation of low brain concentrations of I a challenge. The analytes in MD and UF were separated (within 5 min) by reversed-phase HPLC on a 250 x 4.6 mm I.D. Maxsil 5 microns RP-2 column, and fluorescence of the eluent was monitored at 255 nm (lambda ex) and 320 nm (lambda em). A 0.09% (v/v) aqueous solution of trifluoroacetic acid (1 ml/min) was used as the mobile phase. The response for I in MD and UF samples was linear from 5 to 2000 ng/ml and from 20 to 10,000 ng/ml, respectively. The between-run (n = 6) and within-run (n = 3) variability of the assay was < 15%. Plasma-protein binding of I (fu = 0.68) was determined to be linear from 0.1 to 10 micrograms/ml. The analytical sensitivity, precision and accuracy of this method was suitable for the characterization of the pharmacokinetics and the CNS distribution of I, following administration of intravenous (i.v.) infusion, single i.v. bolus and multiple i.v. bolus doses of I to freely moving rats, with continuous microdialysate sampling of multiple tissues and simultaneous on-line HPLC analysis. Pharmacokinetic parameters for I, as determined from concentrations in blood MD samples with on-line analysis, were in good agreement with those estimated from concentrations in the UF of plasma samples obtained by conventional sampling.  相似文献   

12.
A high-performance liquid chromatographic method was developed for the determination of a new proton pump inhibitor, YH1885 (I), in human plasma and urine, and rat blood and tissue homogenate using fenticonazole as an internal standard. The sample preparation was simple: a 2.5 volume of acetonitrile was added to the biological sample to deproteinize it. A 50-microliter aliquot of the supernatant was injected onto a C8 reversed-phase column. The mobile phase employed was methanol-0.005 M tetrabutylammonium dihydrogenphosphate (77:23, v/v), and it was run at a flow-rate of 1.0 ml/min. The column effluent was monitored using an ultraviolet detector at 270 nm. The retention times for I and the internal standard were 9.0 and 10.3 min, respectively. The detection limits for I in human plasma and urine, and in rat tissue homogenate (including blood) were 50, 100 and 100 ng/ml, respectively. The coefficients of variation of the assay (within- day and between-day) were generally low (below 8.84%) for human plasma and urine, and for rat tissue homogenate. No interferences from endogenous substances were found.  相似文献   

13.
1. The effect of antidromic stimulation of the sensory fibres of the sciatic nerve on inflammatory plasma extravasation in various tissues and on cutaneous vasodilatation elicited in distant parts of the body was investigated in rats pretreated with guanethidine (8 mg kg(-1), i.p.) and pipecuronium (200 microg kg(-1), i.v.). 2. Antidromic sciatic nerve stimulation with C-fibre strength (20 V, 0.5 ms) at 5 Hz for 5 min elicited neurogenic inflammation in the innervated area and inhibited by 50.3 +/- 4.67% the development of a subsequent plasma extravasation in response to similar stimulation of the contralateral sciatic nerve. Stimulation at 0.5 Hz for 1 h also evoked local plasma extravasation and inhibited the carrageenin-induced (1%, 100 microl s.c.) cutaneous inflammation by 38.5 +/- 10.0% in the contralateral paw. Excitation at 0.1 Hz for 4 h elicited no local plasma extravasation in the stimulated hindleg but still reduced the carrageenin-induced oedema by 52.1 +/- 9.7% in the paw on the contralateral side. 3. Plasma extravasation in the knee joint in response to carrageenin (2%, 200 microl intra-articular injection) was diminished by 46.1 +/- 12.69% and 40.9 +/- 4.93% when the sciatic nerve was stimulated in the contralateral leg at 0.5 Hz for 1 h or 0.1 Hz for 4 h, respectively. 4. Stimulation of the peripheral stump of the left vagal nerve (20 V, 1 ms, 8 Hz, 10 min) elicited plasma extravasation in the trachea, oesophagus and mediastinal connective tissue in rats pretreated with atropine (2 mg kg(-1), i.v.), guanethidine (8 mg kg(-1), i.p.) and pipecuronium (200 microg kg(-1), i.v.). These responses were inhibited by 37.8 +/- 5.1%, 49.7 +/- 9.9% and 37.6 +/- 4.2%, respectively by antidromic sciatic nerve excitation (5 Hz, 5 min) applied 5 min earlier. 5. Pretreatment with polyclonal somatostatin antiserum (0.5 ml/rat, i.v.) or the selective somatostatin depleting agent cysteamine (280 mg kg(-1), s.c.) prevented the anti-inflammatory effect of sciatic nerve stimulation (5 Hz, 5 min) on a subsequent neurogenic plasma extravasation of the contralateral paw skin. The inhibitory effect of antidromic sciatic nerve excitation on plasma extravasation in response to vagal nerve stimulation was also prevented by somatostatin antiserum pretreatment. 6. Cutaneous blood flow assessment by laser Doppler flowmetry indicated that antidromic vasodilatation induced by sciatic nerve stimulation was not inhibited by excitation of the sciatic nerve of the contralateral leg (1 Hz, 30 min) or by somatostatin (10 microg/rat, i.v.) injection. 7. Plasma levels of somatostatin increased more than 4 fold after stimulation of both sciatic nerves (5 Hz, 5 min) but the stimulus-evoked increase was not observed in cysteamine (280 mg kg(-1), s.c.) pretreated rats. 8. These results suggest that somatostatin released from the activated sensory nerve terminals mediates the systemic anti-inflammatory effect evoked by stimulating the peripheral stump of the sciatic nerve.  相似文献   

14.
A rapid, selective, sensitive and reproducible HPLC with reductive electrochemical detection for quantitative determination of artemether (ART) and its plasma metabolite, dihydroartemisinin (DHA: alpha and beta isomers) in plasma is described. The procedure involved the extraction of ART, DHA and the internal standard, artemisinin (ARN) with dichloromethane-tert.-methylbutyl ether (1:1, v/v) or n-butyl chloride-ethyl acetate (9:1, v/v). Chromatographic separation was performed with a mobile phase of acetonitrile-water (20:80, v/v) containing 0.1 M acetic acid pH 5.0, running through a microBondapak CN column. The method was capable of separating the two isomeric forms of DHA (alpha, beta). The retention times of alpha-DHA, beta-DHA, ARN and ART were 4.6, 5.9, 7.9 and 9.6 min, respectively. Validation of the assay method was performed using both extraction systems. The two extraction systems produced comparable recoveries of the various analytes. The average recoveries of ART, DHA and ARN over the concentration range 80-640 ng/ml were 86-93%. The coefficients of variation were below 10% for all three drugs (ART, alpha-DHA, ARN). The minimum detectable concentrations for ART and alpha-DHA in spiked plasma samples were 5 and 3 ng/ml, respectively. The method was found to be suitable for use in clinical pharmacokinetic study.  相似文献   

15.
A high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of aspirin and salicylic acid in transdermal perfusates. The compounds were separated on a C8 Nucleosil column (5 microm, 250x4.6 mm) using a mobile phase containing a mixture of water-acetonitrile-orthophosphoric acid (650:350:2, v/v/v) and a flow-rate of 1 ml/min. The transdermal samples were in phosphate-buffered saline (PBS) and could be injected directly onto the HPLC system. The method was reproducible with inter-day R.S.D. values of no greater than 3.46 and 2.60% for aspirin and salicylic acid, respectively. The method was linear over the concentration range 0.2-5.0 microg/ml and had a limit of detection of 0.05 microg/ml for both compounds. For certain samples, it was necessary to ensure that no transmembrane leakage of the aspirin prodrugs had occurred. In these cases, a gradient was introduced by increasing the acetonitrile content of the mobile phase after the salicylic acid had eluted. The method has been applied to the determination of aspirin and salicylic acid in PBS following in vitro application of the compounds to mouse skin samples.  相似文献   

16.
A simple, rapid and reproducible high-performance liquid chromatographic assay for cisapride and norcisapride in human plasma is described. Samples of plasma (150 microl) were extracted using a C18 solid-phase cartridge. Regenerated tubes were eluted with 1.0 ml of methanol, dried, redissolved in 150 microl of methanol and injected. Chromatography was performed at room temperature by pumping acetonitrile-methanol-0.015 M phosphate buffer pH 2.2-2.3 (680:194:126, v/v/v) at 0.8 ml/min through a C18 reversed-phase column. Cisapride, norcisapride and internal standard were detected by absorbance at 276 nm and were eluted at 4.3, 5.3 and 8.1 min, respectively. Calibration plots in plasma were linear (r>0.998) from 10 to 150 ng/ml. Intraday precisions for cisapride and norcisapride were 3.3% and 5.4%, respectively. Interday precisions for cisapride and norcisapride were 9.6% and 9.0%, respectively. Drugs used which might be coadministered were tested for interference.  相似文献   

17.
A simple and sensitive HPLC method for determination of metronidazole in human plasma has been developed. A step of freezing the protein precipitate allowed an efficient separation of aqueous and organic phases minimizing the noise level and improved therefore the limit of quantitation (10 ng ml(-1) using 1 ml of plasma sample). The separation of compounds was performed on a RP 18 column with acetonitrile-aqueous 0.01 M phosphate solution (15:85, v/v) as mobile phase. Detection was performed by UV absorbance at 318 nm. Metronidazole was well resolved from the plasma constituents and internal standard. An excellent linearity was observed between peak-height ratios plasma concentrations over a concentration range of 0.01 to 10 microg ml(-1). Within-day and between-day precision (expressed by relative standard deviation) and accuracy (mean error in per cent) did not exceed 4% between 1 and 10 microg ml(-1) and 8.3 and 7.2% respectively for the limit of quantitation. The method is suitable for bioavailability and pharmacokinetic studies in humans.  相似文献   

18.
A simple high-performance liquid chromatographic method was developed for the determination of ranitidine in human plasma. Prior to analysis, ranitidine and the internal standard (metoprolol) were extracted from alkalinized plasma samples using dichloromethane. The mobile phase was 0.05 M potassium dihydrogenphosphate-acetonitrile (88:12, v/v) adjusted to pH 6.5. Analysis was run at a flow-rate of 1.3 ml/min and at a detection wavelength of 229 nm. The method is sensitive with a detection limit of 1 ng/ml at a signal-to-noise ratio of 3:1, while the quantification limit was set at 15 ng/ml. The calibration curve was linear over a concentration range of 15-2000 ng/ml. Mean recovery value of the extraction procedure was about 90%, while the within-day and between-day coefficients of variation and percent error values of the assay method were all less than 15%.  相似文献   

19.
A simple and rapid method using high-performance liquid chromatography (HPLC) for the simultaneous determination of five macrolides (josamycin, kitasamycin, mirosamicin, spiramycin and tylosin) in meat has been developed. The drugs were extracted with 0.3% metaphosphoric acid-methanol (7:3, v/v), and the extracts were cleaned up on a Bond Elut SCX (500 mg) cartridge. The HPLC separation was performed on a Puresil 5C18 column (150 x 4.6 mm I.D.) with a gradient system of 0.025 M phosphate buffer (pH 2.5)-acetonitrile as the mobile phase at a flow-rate of 1.0 ml/min. The drugs were detected at 232 mn for josamycin, kitasamycin, mirosamicin and spiramycin, and 287 mn for tylosin. The calibration graphs were rectilinear from 2.5 to 100 ng for each drug. The recoveries at the level of 1.0 microgram/g were 70.8-90.4%, and detection limits were 0.05 microgram/g for each drug.  相似文献   

20.
Intracerebroventricular (i.c.v.) choline (50-150 microg) increased blood pressure and decreased heart rate in spinal cord transected, hypotensive rats. Choline administered intraperitoneally (60 mg/kg), also, increased blood pressure, but to a lesser extent. The pressor response to i.c.v. choline was associated with an increase in plasma vasopressin. Mecamylamine pretreatment (50 microg; i.c.v.) blocked the pressor, bradycardic and vasopressin responses to choline (150 microg). Atropine pretreatment (10 microg; i.c.v.) abolished the bradycardia but failed to alter pressor and vasopressin responses. Hemicholinium-3 [HC-3 (20 microg; i.c.v.)] pretreatment attenuated both bradycardia and pressor responses to choline. The vasopressin V1 receptor antagonist, (beta-mercapto-beta,beta-cyclopenta-methylenepropionyl1, O-Me-Tyr2, Arg8)-vasopressin (10 microg/kg) administered intravenously 5 min after choline abolished the pressor response and attenuated the bradycardia-induced by choline. These data show that choline restores hypotension effectively by activating central nicotinic receptors via presynaptic mechanisms, in spinal shock. Choline-induced bradycardia is mediated by central nicotinic and muscarinic receptors. Increase in plasma vasopressin is involved in cardiovascular effects of choline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号