首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Nanofilamentous carbon was grown on a carbon foam by catalytic chemical vapour deposition (CVD) using the decomposition of ethylene/hydrogen mixtures over Ni. The carbon foam was obtained from a coal by a two-stage thermal process, with the first stage taking place at a temperature within the plastic region of the precursor coal. The extent of porosity and the pore size of the foam were mainly influenced by the pressure reached in the reactor during the first stage. In the CVD process, 700 °C was the optimum temperature for obtaining good yields of nanofilaments. A low ethylene/hydrogen ratio (1/4) in the reactive gas gave rise to almost only short and thin carbon nanostructures. A higher proportion of C2H4 (4/1, C2H4/H2) gave better yields of nanofilaments, with good proportions of higher-length and higher-diameter (up to around 0.5 μm) structures. Among the carbon forms produced, transmission electron microscopy revealed the predominance of fishbone-type nanofibres, with some bamboo-like nanotubes being also observed.  相似文献   

2.
Carbon nanotubes (CNTs) have been grown by the decomposition of C2H2 over a thin catalyst film in order to investigate the growth mechanism of CNTs by chemical vapour deposition (CVD). The catalyst was prepared from an iron nitrate precursor solution that was spin-coated on an aluminium substrate. The density (mg cm−2) and the length of the CNTs were greatly influenced by the precursor concentration, the time of deposition, the temperature and the ratio of C2H2:N2. Scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction measurements have been carried out in order to investigate the behaviour of the catalyst before and during the growth process. The iron nitrate film formed an amorphous iron oxide layer that transformed to crystalline Fe2O3, which was reduced to Fe3O4 and FeO in contact with the C2H2: N2 reaction atmosphere. The CNTs synthesis took place on small iron carbide (Fe3C) particles that were formed from the FeO.  相似文献   

3.
Despite significant progress in carbon nanotube (CNT) synthesis by thermal chemical vapor deposition (CVD), the factors determining the structure of the resulting carbon filaments and other graphitic nanocarbons are not well understood. Here, we demonstrate that gas chemistry influences the crystal structure of carbon filaments grown at low temperatures (500 °C). Using thermal CVD, we decoupled the thermal treatment of the gaseous precursors (C2H4/H2/Ar) and the substrate-supported catalyst. Varying the preheating temperature of the feedstock gas, we observed a striking transition between amorphous carbon nanofibers (CNFs) and crystalline CNTs. These results were confirmed using both a hot-wall CVD system and a cold-wall CVD reactor. Analysis of the exhaust gases (by ex situ gas chromatography) showed increasing concentrations of specific volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) that correlated with the structural transition observed (characterized using high-resolution transmission electron microscopy). This suggests that the crystallinity of carbon filaments may be controlled by the presence of specific gas phase precursor molecules (e.g., VOCs and PAHs). Thus, direct delivery of these molecules in the CVD process may enable selective CNF or CNT formation at low substrate temperatures. The inherent scalability of this approach could impact many promising applications, especially in the electronics industry.  相似文献   

4.
Co is used as a catalyst for chemical vapor deposition (CVD) of vertically aligned multi-walled carbon nanotubes (CNTs) in a tube furnace at atmospheric pressure. C2H2 and NH3 were used for the carbon feedstock and reaction control, respectively. The CVD process parameters determine the chemical properties of the Co particles and subsequently the morphologies and field emission behavior of CNTs as they strongly depend upon the catalyst condition. The flow rate ratio of NH3 to C2H2 is shown to be central to the synthesis of vertically aligned CNTs. Repeatable synthesis of vertically aligned CNTs at atmospheric pressure in a tube furnace is cost effective for large area deposition of such structures which may be used, for example, in vacuum field emission devices.  相似文献   

5.
We performed experiments on the synthesis of carbon nanotubes (CNTs) by iron-catalyzed chemical vapor deposition (CVD) in C2H6 + H2 atmosphere. We varied flow-rates of reactant gases (ethane: 30–120 sccm, hydrogen: 0–120 sccm), as well as their ratio, in order to study the evolution of the growth kinetics. We used scanning electron microscopy, high-resolution transmission electron microscopy and Raman spectroscopy to investigate the morphologies, dimensions and crystalline structure of the samples. Our results demonstrate the crucial role played by H2 in the enhancement of C diffusion-rate and in the consequent development of ordered and smooth graphene layers. A faster growth-rate is achieved by the increase of C2H6 flow-rate. However, if H2 flow-rate is not adequately enhanced, the improvement is only apparent. The excess of C supplied gives rise to deposition of amorphous carbon onto the CNT walls, and to the co-production of different nanostructures. A substantial agreement is found with results reported for CVD growth of CNTs by the use of different catalysts, reactants and gas-flowing setups.  相似文献   

6.
Oriented nanotube films (20-35 μm thick) were synthesised on flat silicon substrates by chemical vapor deposition (CVD) of a gas mixture of acetylene and nitrogen. For the CVD we used metal oxide clusters formed by spin coating an iron(III) nitrate ethanol solution onto a silicon substrate and subsequent heating. The cluster density and its effects on the nanotube density were investigated as a function of the iron(III) nitrate concentration and the synthesis temperature. A high nanotube density was achieved with a high density of iron oxide clusters as nucleation centres for the growth of nanotubes. The cluster density was controlled by the iron(III) concentration of the ethanolic coating solution and by the synthesis temperature. The perpendicular orientation of the nanotubes with respect to the substrate surface is attributed to a high density of nanotubes.  相似文献   

7.
Mahesh Karwa 《Carbon》2006,44(7):1235-1242
The self-assembly of carbon nanotubes (CNTs) on the inside wall of a relatively long stainless steel tubing for applications such as separations and chromatography, is reported in this paper. The CNTs were deposited by the chemical vapor deposition (CVD) using ethylene as the carbon source and the iron nanostructures in the stainless steel as the catalyst. The coating consisted of a layer of CNTs aligned perpendicular to the circumference of the tubes, often with an overcoat of disordered carbonaceous material, which could be selectively oxidized by exposing the CNT layer below to pure O2 at 375 °C. Variation in uniformity in terms of the thickness and morphology of the deposited film and surface coverage were studied along the length of a tube by scanning electron microscopy (SEM). The effects of process conditions, such as flow rate and deposition time on the coating thickness, were studied. The catalytic effect of the iron nanostructures depended on surface conditioning of the tubing. It was found that the pretreatment temperature influenced the quality of the nanotube coating. The morphology of the CNT deposit supported the base-growth scheme and VLS (vapor-liquid-solid) growth mechanisms of CNTs.  相似文献   

8.
We prepared two kinds of catalytic layers onto n-typed silicon substrate—nickel by r.f.-magnetron sputtering and iron (III) nitrate metal oxide by spin coating. For iron (III) nitrate metal oxide 0.5 mol of ferric nitrate nonahydrate [Fe2(NO3)3·9H2O] ethanol solution was coated onto silicon by spin coater at different rotation speeds (rev./min). Carbon nanotubes were synthesized on both Ni and iron (III) nitrate metal oxide layers by the HFPECVD (hot filament plasma-enhanced chemical vapor deposition) method. We used ammonia (NH3) and acetylene (C2H2) for the dilution gas and a carbon precursor for the growth of the carbon nanotubes, respectively. We could observe the relationship between the catalytic cluster density and the nanotube density with scanning electron microscopy (SEM) images. The density of carbon nanotubes on iron (III) nitrate metal oxide was controlled by the rev./min of the spin coater. Transmission electron microscopy (TEM) image shows multi-walled carbon nanotube where the catalyst was found in the tip of the carbon nanotube. Electron dispersive X-ray spectrometry (EDS) peaks for CNT's tip show that it was constituted with nickel and iron, respectively. Raman spectroscopy of nanotubes shows D-band and G-band peaks approximately 1370 and 1590 cm−1.  相似文献   

9.
K.L. Yang  R.T. Yang   《Carbon》1986,24(6)
Carbon deposition of benzene on iron was studied at 550–700°C with 0–1 atm hydrogen in the carrier gas. At least three types of carbon are formed: amorphous, graphitic and carbidic (Fe3C). The surface of Fe3C is essentially inactive for benzene decomposition. In the presence of H2, a metallic surface is maintained resulting in a high activity and hence an accelerating effect by H2. In the reaction system five competing reactions are involved and the net rate of carbon deposition is the sum of the individual rates. Based on the results in this study, the retarding effects of H2 on carbon deposition reported in the literature can also be explained. The methanation reaction of surface carbon by H2 becomes important under conditions when the surface is relatively inactive for hydrocarbon decomposition, and under such conditions, H2 has a retarding effect on carbon deposition.  相似文献   

10.
Huaping Liu  Shohei Chiashi 《Carbon》2010,48(1):114-15680
Single-walled carbon nanotubes (SWCNTs) have been directly grown on a SiO2 substrate using the chemical vapor deposition (CVD) of ethanol without a catalyst. Care was taken to exclude the possibility that the SWCNT growth was induced by conventional metal catalysts such as Fe, Co and Ni resulting from the contamination. Pretreatment of the SiO2 at 950 °C or a higher temperature in H2 before CVD was critical for the synthesis of SWCNTs. After CVD process, nano-scale carbon particles were produced besides SWCNTs. Based on these results, we propose that the annealing of SiO2 substrates in H2 at high temperature generates defects on their surfaces, and these defects provide nucleation sites for the formation of carbon nanoparticles and assist the formation of carbon nanocaps, thus leading to the SWCNT growth.  相似文献   

11.
The effect of a small amount of O2 addition on film quality and hydrogen incorporation in chemical vapour deposition (CVD) diamond films was investigated and the films were grown using a 5-kW microwave plasma CVD reactor. Film quality and bonded hydrogen were characterized using micro-Raman and Fourier transform infrared (FTIR) spectroscopy, respectively. It was found that in general for films grown using CH4/H2 plasma both without and with O2 addition, the hydrogen incorporation increases with increasing substrate temperature, while a small amount of O2 addition (O2/CH4=0.1) into CH4/H2 (4%) plasma strongly suppresses the incorporation of hydrogen into the film. Raman spectra show that the added oxygen improved film quality by etching and suppressing the amorphous carbon component formed in the film. The above effect of oxygen addition on hydrogen incorporation and film quality is discussed according to the growth mechanism of CVD diamond. The CVD diamond specific hydrogen related IR vibration at 2828 cm−1 appears as a sharp and strong peak only in the FTIR spectra of poor quality films grown at high temperature both without and with O2 addition, but it appears much stronger in the film grown without O2 addition. This result experimentally excludes the assignment of the 2828 cm−1 peak arises from hydrogen bonded to oxygen related defect in the literature.  相似文献   

12.
The kinetics of methane pyrolysis were studied in a tubular flow reactor in the temperature range 1200 to 1500°C at atmospheric pressure. To avoid excessive carbon formation the reaction time was short and the methane feed was diluted with hydrogen. Ethene, ethyne, benzene and hydrogen were the main gaseous products. Ethane was observed as a product at very low conversions of methane. More than 90% selectivity was obtained for C2 products. The ratio of ethyne to ethene increased with increasing temperature. The yield of C2 products is limited by gas-phase equilibrium at lower temperatures. Formation of carbon was strongly depressed by hydrogen at higher temperatures. The maximum yield of ethyne was found to increase from about 10% to about 50% when the temperature was increased from 1200 to 1500°C, with hydrogen dilution H2: CH4 = 2: 1. A mechanistic reaction model was used to simulate the pyrolysis of methane at the actual conditions. A sensitivity analysis was performed to evaluate the elementary reactions which influence the formation and consumption of the species in the model system.  相似文献   

13.
Amorphous carbon nitride (a-CN) films on Si(100) were grown by plasma-enhanced chemical vapor deposition at room temperature, followed by H2 plasma and thermal annealing treatments, which produced densely and uniformly distributed nanodot- and nanostripe-like structures. The as-grown CN films showed two weak emission peaks at 2.1 and 2.4 eV, but the a-CN nanostructures showed a strong peak at 2.2 eV.  相似文献   

14.
The Fe/ZrO2 catalyst (1% Fe by weight) shows a strong adsorption capacity toward the nitric oxide (at room temperature the ratio NOFe is ca. 0.5) as a consequence of the formation of a highly dispersed iron phase after reduction at 500–773 K. Nitric oxide is adsorbed mainly as nitrosyl species on the reduced surface where the Fe2+ sites are prevailing, but it is easily oxidised by oxygen forming nitrito and nitrato species adsorbed on the support. However, in the presence of a reducing gas such as hydrogen, carbon monoxide, propane and ammonia at 473–573 K the Fe-nitrosyl species react producing nitrogen, nitrous oxide, carbon dioxide and water, as detected by FTIR and mass spectrometers. The results show that nitric oxide reduction is more facile with hydrogen containing molecules than with CO, probably due the co-operation of spillover effects. Experiments carried out with the same gases in the presence of oxygen show, however, a reduced dissociative activity of the surface iron sites toward the species NOχ formed by NO oxidation and therefore the reactivity is shifted to higher temperatures.  相似文献   

15.
Cubic boron nitride (c-BN) films were synthesized by low-pressure inductively coupled radio-frequency plasma (ICP) chemical vapor deposition (CVD) from a gas mixture of borontrifluoride (BF3), nitrogen, hydrogen and helium. BN films containing 50–80% cubic phase were obtained under 100 mTorr and at 750–1050 °C of substrate temperature. Substrate bias voltage required to obtain c-BN decreased down to − 20 V with increasing substrate temperature. The adhesion was also improved at high substrate temperatures as compared with those obtained in the B2H6–Ar–N2–H2 gas system, probably because of the decrease of bombarding energy and chemical effects of fluorine for selective deposition of c-BN.  相似文献   

16.
In this work, novel 3D hollow carbon nanotetrapod structures are synthesized by all-vapor-phase process and its electrical properties are studied for electron field emission applications. The fabrication involves three main stages conducted sequentially in a single tube furnace, including in situ ZnO nanotetrapod synthesis, carbon chemical vapor deposition with acetylene/hydrogen (C2H2/H2) mixture and vapor-phase ZnO etching. The effects of C2H2/H2 gas flow composition, synthesis time and temperature on structural morphology of 3D carbon nanostructures and growth mechanisms are systematically investigated. The optimal condition that yields unique 3D hollow carbon nanotetrapod structures includes synthesis time of 3 min, temperature of 700 °C, C2H2 flow rate of 3 sccm, H2 flow rate of 24 sccm for 40-mm-tube-inner diameter. Insufficient synthesis time or C2H2 flow rate, excessive H2 flow rate and non-optimal temperature leads to very thin and distorted carbon nanotetrapod structures while excessive time or C2H2 flow rate entails 3D solid carbon nanotetrapod structures. For electrical properties, the nanostructures exhibit decreasing electrical conductivity and improved emission performances with decreasing synthesis time or C2H2 flow rates and increasing H2 flow rate. The optimal 3D hollow carbon nanostructure offers excellent field-emission performances with low turn-on electric field of 1.2 V/μm and high field-enhancement factor of ∼7620.  相似文献   

17.
P. Fan  X. Zhang  D. Hua  G. Li 《Fuel Cells》2016,16(2):235-243
A challenge in the operation of solid oxide fuel cells (SOFCs) with hydrocarbon fuels is the carbon deposition on the nickel/yttria‐stabilized zirconia (Ni/YSZ) anode. The Grabke‐type kinetic model has been proposed for the carbon formation based upon the assumption of elementary steps, which consist of a rate‐limiting dissociative chemisorption step and a stepwise dehydrogenation of the chemisorbed methyl group. This work experimentally studied the carbon formation on a SOFC Ni/YSZ anode exposed to CH4+H2 gas mixtures. Experiments were conducted with various gas compositions of CH4/H2 and temperatures in the range from 873 K to 1,123 K. The experimental results were used to determine a kinetic model that was applied to the SOFC operating environments. Based on the experimental data, the formula for the carbon formation rate that is dependent on the operating temperature and the gas compositions of CH4/H2 was established.  相似文献   

18.
Novel microporous activated carbon (MAC) with high surface area and pore volume has been synthesized by microwave heating. Iron oxide nanoparticles were loaded into MAC by using Fe(NO3)3·9H2O followed by microwave irradiation for up to five minutes. The surface modified microporous activated carbon was characterized by BET, XRD, SEM and thermogravimetric examinations. Adsorption data of H2 on the unmodified and modified MACs were collected with PCT method for a pressure range up to 120 bar at 303 K. Greater hydrogen adsorption was observed on the carbon adsorbents doped with 1.45 wt% of iron oxide nanoparticle loaded due to the joint properties of hydrogen adsorption on the carbon surface and the spill-over of hydrogen molecules into carbon structures.  相似文献   

19.
A time‐dependent multiphysics, multiphase model is proposed and fully developed here to describe carbon nanotubes (CNTs) fabrication using chemical vapor deposition (CVD). The fully integrated model accounts for chemical reaction as well as fluid, heat, and mass transport phenomena. The feed components for the CVD process are methane (CH4), as the primary carbon source, and hydrogen (H2). Numerous simulations are performed for a wide range of fabrication temperatures (973.15–1273.15 K) as well as different CH4 (500–1000 sccm) and H2 (250–750 sccm) flow rates. The effect of temperature, total flow rate, and feed mixture ratio on CNTs growth rate as well as the effect of amorphous carbon formation on the final product are calculated and compared with experimental results. The outcomes from this study provide a fundamental understanding and basis for the design of an efficient CNT fabrication process that is capable of producing a high yield of CNTs, with a minimum amount of amorphous carbon. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

20.
This study investigates the growth mechanism of IC compatible processes and to the feasibility of synthesizing networks of single-walled carbon nanotubes (SWNTs) at lower temperatures (610 °C) on Si wafer using microwave plasma chemical vapor deposition (MPCVD) with CH4 and H2 as source gases. The effects of the buffer layer materials (ZnS–SiO2, Al2O3, AlON, and AlN ) and process conditions on growth of carbon nanostructures with Co as catalyst were also examined, where the buffer layers and Co catalyst were deposited in sequence by physical vapor deposition (PVD), followed by H-plasma pretreatment before deposition of carbon nanostructures. Additionally, the morphologies and bonding structures of carbon nanostructures were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and Raman Spectroscopy. Analytical results demonstrate that networks of SWNTs are more favorable to be synthesized by selecting proper buffer layer material (e.g., AlON), and under higher temperatures, thinner catalyst thickness (e.g., 5 nm) and lower CH4 / H2 ratio (e.g., 5 / 100 sccm/sccm). The networks of SWNTs can be fabricated at temperatures as low as 610 °C by manipulating these parameters. In conclusion, the growth mechanism determines the conditions for the formation of nano-sized extrusions on catalyst particles surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号