首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical hydrogenation employing a mediator of formate/formic acid resulted in partial hydrogenation of vegetable and soybean oil at 20–40 °C and ambient pressure when palladium supported on alumina was employed as a catalyst. An oleic acid content of 48% with a corresponding iodine value of 81 for the vegetable oil hydrogenated at 20 °C was obtained. The total trans fatty acid content and especially the 18:1 trans fatty acid were found to increase with the reaction temperature and time. Nonetheless, relatively low total trans and 18:1 trans fatty acid (7 and 3.8%, respectively) contents were found when the vegetable oil was partially hydrogenated to achieve an iodine value of 112.  相似文献   

2.
A statistical method for evaluation of catalysts was used to determine the behavior of palladium catalyst for soybean oil hydrogenation. Empirical models were developed that predict the rate,trans-isomer formation, and selectivity over a range of practical reaction conditions. Two target iodine value (IV) ranges were studied: one range for a liquid salad oil and the other for a margarine basestock. Although palladium has very high activity, it offered no special advantage intrans-isomer formation or selectivity. Palladium can substitute for nickel catalyst, at greatly reduced temperature and catalyst concentrations, for production of salad oil or margarine basestock from soybean oil. Presented at the AOCS meeting, Chicago, May 1983.  相似文献   

3.
The physicochemical characteristics and FA compositions were determined for refined-bleached-deodorized (RBD) high-palmitic acid solin (HPS) oil, RBD solin oil, and degummed linseed oil. The predominant FA in HPS oil were palmitic (16.6%), palmitoleic (1.4%), stearic (2.5%), oleic (11.3%), linoleic (63.7%), and linolenic (3.4%). HPS oil was substantially higher in palmitic acid than either solin oil or linseed oil, and similar to solin oil in linolenic acid content. HPS, solin, and linseed oils exhibited similar sterol and tocopherol profiles. The physicochemical characteristics of the three oils (iodine value, saponification value, m.p., density, specific gravity, viscosity, PV, FFA content, color) reflected their FA profiles and degree of refinement. During hydrogenation of HPS oil, the proportion of saturated FA (palmitic and stearic) increased, and that of unsaturated FA (oleic, linoleic, and linolenic) decreased as the iodine value declined. This resulted in an inverse linear relationship between m.p. and iodine value. Hydrogenation also generated trans FA. The proportion of trans FA was inversely related to iodine value in partially hydrogenated samples. Fully hydrogenated HPS oil (i.e., HPS stearine, iodine value <5) was devoid of trans FA.  相似文献   

4.
Soybean oil was hydrogenated with a carbon‐supported ruthenium catalyst (Ru/C) at 165 °C, 2 bar H2 and 500 rpm stirring speed. Reaction rates, trans isomer formation, selectivity ratios and melting behaviors of the samples were monitored. No catalytic activity was found for the application of 10 ppm of the catalyst, and significant catalytic activity appeared at >50 ppm of active catalyst. The catalyst concentration had an effect on the reaction rate of hydrogenation, but the weight‐normalized reaction rate constant (kc) was almost independent of the catalyst concentration at lower iodine values. Ru/C generated considerable amounts of trans fatty acids (TFA), including high amounts of trans 18:2, and also stearic acid, due to its very non‐selective nature. The selectivity ratios were found to be low and varied between 1.12 and 4.32 during the reactions. On the other hand, because of the low selectivity, higher slip melting points and solid fat contents at high temperatures were obtained than those for nickel and palladium catalysts. Another different characteristic of this catalyst was the formation (max 1.67%) of conjugated linoleic acid (CLA) during hydrogenation. Besides, CLA formation in the early stages of the reactions did not change very much with the lower iodine values.  相似文献   

5.
The hydrogenation of the oleic acid group was investigated with the objective of determining the effect of solvents on the reaction rate and the formation of positional and geometrical isomers. Methyl oleate, either alone or dissolved in one of several solvents, hexane, ethanol,n-butyl ether, or acetic acid, was hydrogenated to an iodine value of about 50 under atmospheric pressure and at 30°C, with palladium-on-carbon and the W-5 form of Raney nickel as catalysts. Hydrogenation with palladium catalyst, with or without solvents, produced 76.6 to 79.1%trans bonds, based on the total double bonds. This is significantly greater than the 67% obtained previously. Hydrogenation products obtained with Raney nickel and solvents contained as little as 20.7%trans bonds at an iodine value of about 50. In two cases thetrans bonds were equal to about one-third the positional isomers. Positional isomers formed extensively when the Raney nickel was used in the absence of solvents and when the palladium catalyst was used. When the Raney nickel and solvents were used large proportions of double bonds were found in the original 9-position. Presented at the 51st Annual Meeting of the American Oil Chemists’ Society, Dallas, Tex., April 4–6, 1960. One of the laboratories of the Southern Utilization Research and Development Division, Agricultural Research Service, U. S. Department of Agriculture.  相似文献   

6.
The cyclopropene acid groups in cottonseed oil can be modified by a light hydrogenation which will not produce large amounts oftrans isomers or lower the iodine value to a significant extent. Optimum conditions, as indicated by this investigation, are 105-115C, 20 psig hydrogen pressure, 0.1% electrolytic nickel as catalyst, and a low hydrogen-dispersion rate. Under milder conditions of hydrogenation the elimination of the cyclopropenes was accompanied by a lower formation oftrans isomers and a lower hydrogenation of noncyclopropenes, but the time required increased. In one hydrogenation carried out with commercial nickel catalyst, the 0.4% of malvalic acid groups in the cottonseed oil was hydrogenated completely whereas the iodine value was reduced by only 1.7 units and only 2.1% oftrans isomers was formed. AVinterization of cottonseed oils which had been hydrogenated to the point of eliminating their response to the Halphen test and in which only small amounts of saturated acid groups andtrans isomers had been formed gave yields equal to or better than those of the original oil. Hydrogénation actually increased the ease of winterization. 2 So. Utiliz. Ees. Dev. Div, ARS, USDA.  相似文献   

7.
The main objective of this study was to determine the effect of different frying oils and frying methods on the formation of trans fatty acids and the oxidative stability of oils. Sunflower, canola and commercial frying oils, the most commonly used oils for frying potatoes in the fast food industry, were used as the frying medium. The value for total polar compounds was highest when commercial frying oil was used in the microwave oven (22.5 ± 1.1). The peroxide value, as an indicator of oil oxidation, was lowest for microwave oven frying (2.53 ± 0.03). The K232 and K270 values were 0.41 ± 0.04 and 0.18 ± 0.02, respectively, for commercial frying oil in the microwave oven. The lowest free fatty acid content was recorded for the commercial frying oil used in the deep‐fat fryer at 190 °C. The highest iodine value was measured for sunflower oil used in the deep‐fat fryer (148.14 ± 0.07), indicating a greater degree of unsaturation. The lowest trans fatty acid value was recorded for sunflower oil in the microwave oven (0.17 ± 0.05), with a higher overall amount of total trans fatty acids observed for oils after frying in the electrical deep‐fat fryer compared to the microwave. Sunflower oil was favourable for both frying methods in terms of the trans fatty acid content.  相似文献   

8.
Catalytic behavior of palladium in the hydrogenation of edible oils   总被引:2,自引:0,他引:2  
Palladium supported on alumina was used to hydrogenate soybean and canola oil. Previous literature reports indicated that palladium forms moretrans isomers than nickel. At 750 psig, 50 ppm palladium, and at 70 C, only 9.4%trans were formed when canola oil was hydrogenated to IV 74. In general, high pressure and low temperature favored lowtrans formation with no appreciable loss in catalyst activity. The effect of pressure, temperature and catalyst concentration on reaction rate,trans formation and selectivity is presented. A survey of various catalyst supports is discussed. Apparent activation energies of 6.3 to 8.9 kcal/mol were obtained; they are in good agreement with values reported in the literature.  相似文献   

9.
Hydrogenation of milk fat with palladium and nickel as catalysts was studied at various temperatures, pressures, and concentrations of catalyst. Samples were removed from the laboratory hydrogenator at intervals during the reaction, and changes in refractive index, iodine value, Wiley mp, and percentages of fatty acids andtrans-isomers were determined. Palladium was several times more active as a catalyst than nickel. Milk fat with an iodine value of 35 and mp of 34 C was hydrogenated with 0.05% palladium to an iodine value of 6 and a mp of 46 C in 30 min at 66 C and 53 psi of hydrogen. Kinetic data for each catalyst yielded two slopes, indicating that a change in reaction rate occurred.  相似文献   

10.
The physicochemical properties of oil from Rosa affinis rubiginosa seeds were analyzed after extraction by (i) organic solvent, (ii) cold pressing, and (iii) cold pressing assisted by enzymatic pretreatment using a mixture of the Novo-Nordisk A/S products Cellubrix (cellulase and hemicellulase activities) and Olivex (pectinase, cellulase, and hemicellulase activities). There were no significant differences in oil quality parameters, such as iodine value, refractive index, saponification value, unsaponifiable matter, and FA profile, when applying any of the three extraction processes. Although significant variations were observed in FFA content (acid value) and PV of the oil obtained by both of the cold-pressing oil extraction processes, these results were lower than the maximum value established from the Codex Alimentarius Commission. All-trans-retinoic acid content improved by 700% in rosehip oil obtained through cold pressing, with and without enzymatic pretreatment, in comparison with organic solvent extraction. This result is quite important for cosmetic oil because all-trans-retinoic acid is the main bioactive component responsible for the regenerative properties of this oil.  相似文献   

11.
trans Isometric fatty acids of partially hydrogenated fish oil (PHFO) consist oftrans 20∶1 andtrans 22∶1 in addition to thetrans isomers of 18∶1, which are abundant in hydrogenated vegetable oils, such as in partially hydrogenated soybean oil (PHSBO). The effects of dietarytrans fatty acids in PHFO and PHSBO on the fatty acid composition of milk were studied at 0 (colostrum) and 21 dayspostpartum in sows. The dietary fats were PHFO (28%trans), or PHSBO (36%trans) and lard. Sunflower seed oil (4%) was added to each diet. The fats were fed from three weeks of age throughout the lactation period of Experiment 1. In Experiment 2 PHFO or “fully” hydrogenated fish oil (HFO) (19%trans), in comparison with coconut oil (CF) (0%trans), was fed with two levels of dietary linoleic acid, 1 and 2.7% from conception throughout the lactation period. Feedingtrans-containing fats led to secretion oftrans fatty acids in the milk lipids. Levels oftrans 18∶1 andtrans 20∶1 in milk lipids, as percentages of totalcis+trans 18∶1 andcis+trans 20∶1, respectively, were about 60% of that of the dietary fats, with no significant differences between PHFO and PHSBO. The levels were similar for colostrum and milk. Feeding HFO gave relatively lesstrans 18∶1 andtrans 20∶1 fatty acids in milk lipids than did PHFO and PHSBO. Only low levels ofcis+trans 22∶1 were found in milk lipids. Feedingtrans-containing fat had no consistent effects on the level of polyenoic fatty acids but reduced the level of saturated fatty acids and increased the level ofcis+trans monoenoic fatty acids. Increasing the dietary level of linoleic acid had no effect on the secretion oftrans fatty acids but increased the level of linoleic acid in milk. The overall conclusion was that the effect of dietary fats containingtrans fatty acids on the fat content and the fatty acid composition of colostrum and milk in sows were moderate to minor.  相似文献   

12.
Empirical modeling of soybean oil hydrogenation   总被引:2,自引:0,他引:2  
Empirical hydrogenation models were generated from statistically designed laboratory experiments. These models, consisting of a set of polynomial equations, relate the operating variables of soybean oil hydrogenation to properties of the reaction and of the fat produced. These properties include reaction rate,trans-isomer content and melting point. Operating variables included in the models were temperature, hydrogen pressure, catalyst concentration, agitation rate and iodine value. The effects of catalyst concentration and agitation rate were found to be significant in determiningtrans-isomer content, which in turn influences the melting characteristics of the hydrogenated oil. Pressures above 30 psig were found to have little effect ontrans-isomer content, although pressure was very important in determining reaction rate. Reaction temperature was observed as the most important factor in determining thetrans-isomer content for a given iodine value. Generally, 50 to 60%trans isomer content is predicted by the model for the iodine value range and operating conditions used in this study. Thus, these predictive models can assist in scaling up hydrogenation processes and in determining the optimum operating parameters for running commercial hydrogenation. Presented at the AOCS Meeting, Chicago, May 1983.  相似文献   

13.
Hydroxy unsaturated glycerides were sought from safflower and linseed oils by partial sulfation with sulfuric acid, followed by hydrolysis of sulfate to hydroxy groups. Sulfation of oleicrich oils or their fatty acids and subsequent hydrolysis (effected conveniently with acidified barium chloride) yielded hydroxy products corresponding to 50–70% of the monoene content. Sulfation of a mixture of methyl oleate and linoleate with 78% w/w of sulfuric acid was directed mainly at the oleate component. Safflower oil was partially sulfated without side reactions using 78% or 79% w/w of sulfuric acid, the hydrolyzed products showing hydroxyl value (HV) of about 35 for a loss of 13 units of iodine value (IV). Use of more concentrated sulfuric acid, and subsequent hydrolysis, led to sulfur-containing products which include sultones. Treatment of atrans,trans, but not of acis,trans conjugated diene with sulfuric acid led to sultone formation. It is postulated that when linoleate is sulfated with strong acids, acidisomerization to atrans,trans conjugated diene occurs, probably followed by 1,4-addition of -OH and -SO3H and quick dehydration of these moieties to give a 1,4-sultone. Linseed oil was apparently sulfated without side reactions using 80% w/w sulfuric acid at 0–5 C and then hydrolyzed to a product of HV 77 and IV 159.  相似文献   

14.
The effects of dietarytrans fatty acids on tissue fatty acid composition were studied in newborn piglets delivered from sows fed partially hydrogenated fish oil (PHFO) (28%trans) or partially hydrogenated soybean oil (PHSBO) (36%trans) in comparison with lard (0%trans) from 3 wk of age and through gestation in Experiment 1, or fed PHFO or “fully” hydrogenated fish oil (HFO) (19%trans) in comparison with coconut oil (CF) (0%trans) with two levels, 1 and 2.7%, of dietary linoleic acid from conception through gestation in Experiment 2. The piglets were sampled immediately after delivery, without having access to mothers' milk. Incorporation oftrans fatty acids into brain PE (phosphatidylethanolamine) were non-detectable or very low (less than 0.1%). The incorporation of 18∶1trans into heart-PE, liver mitochondria-PE, total plasma lipids and adipose tissue was low, and 20∶1trans was not detected. Dietarytrans fatty acids had no consistent effects on the overall fatty acid composition of the different tissue lipids. It is conclude thattrans fatty acids from PHFO, HFO and PHSBO have no significant effects on the fatty acid accretion in the fetal piglet.  相似文献   

15.
Gangidi RR  Proctor A 《Lipids》2004,39(6):577-582
Conjugated linoleic acid (CLA), an anticarcinogenic compound with numerous other health benefits, is present mainly in dairy and beef lipids. The main CLA isomer present in dairy and beef lipids is cis 9, trans 11 CLA at a 0.5% concentration. The typical minimum human dietary intake of CLA is 10 times less than the 3 g/d suggested requirement that has been extrapolated from animal and cell-line studies. The objectives of this study were to produce CLA isomers from soybean oil by photoisomerization of soybean oil linoleic acid and to study the oxidation status of the oil. Refined, bleached, and deodorized soybean oil with added iodine concentrations of 0, 0.1, 0.25, and 0.5% was exposed to a 100-W mercury lamp for 0 to 120 h. An SP-2560 fused-silica capillary GC column with FID was used to analyze the esterified CLA isomers in the photoisomerized oil. The CLA content of the individual isomers was optimized by response surface methodology. Attenuated total reflectance (ATR)-FTIR spectra in the 3400 to 3600 cm−1 range and 1H NMR spectra in the 8 to 12 ppm range of the photoisomerized soybean oil were obtained to follow hydroperoxide formation. The largest amount of cis 9, trans 11 CLA isomer in soybean oil was 0.6%, obtained with 0.25% iodine and 84 h of photoisomerization. Lipid hydroperoxide peaks in the ATR-FTIR spectra and aldehyde peaks in the 1H NMR spectra were not observed in the photoisomerized soybean oil, and the spectra were similar to that of fresh soybean oil. This study shows that CLA isomers can be produced simply and inexpensively from soybean oil by photoisomerization.  相似文献   

16.
A Fourier transform infrared (FTIR) edible oil analysis package designed to simultaneously analyze for trans content, cis content, iodine value (IV), and saponification number (SN) of neat fats and oils by using calibrations based on pure triglycerides and derived by application of partial-least-squares (PLS) regression was assessed and validated. More than 100 hydrogenated rapeseed and soybean samples were analyzed by using the edible oil analysis package as well as the newly proposed modification of the AOCS IR trans method with trielaidin in a trans-free oil as a basis for calibration. In addition, ∼1/3 of the samples were subsequently reanalyzed by gas chromatography (GC) for IV and trans content. The PLS approach predicted somewhat higher trans values than the modified AOCS IR method, which was traced to a combination of the inclusion of trilinolelaidin in the calibration set and the effects of baseline fluctuations. Eliminating trilinolelaidin from the triglyceride standards and the use of second-derivative spectra to remove baseline fluctuations produced excellent concurrence between the PLS and modified AOCS IR methods (mean difference of 0.61% trans). Excellent internal consistency was obtained between the IV and cis and trans data provided by the edible oil analysis package, and the relationship was close to that theoretically expected [IV=0.86 (cis + trans)]. The IV data calculated for the GC-analyzed samples matched the PLS IV predictions within 1 IV unit. The trans results obtained by both IR methods were linearly related to the GC data; however, as is commonly observed, the GC values were significantly lower than the IR values, the GC and IR data being related by a slope factor of ∼0.88, with an SD of ∼0.80. The concurrence between the trans data obtained by the two FTIR methods, and between the FTIR and GC-IV data, as well as the internal consistency of the IV, cis and trans FTIR predictions, provides strong experimental evidence that the edible oil analytical package measures all three variables accurately. Co-Director, McGill IR Group.  相似文献   

17.
A mixture of all-trans-retinoic acid and iodine in heptane was irradiated. Two oxidation products were isolated by high performance liquid chromatography and identified as all-trans- and 13-cis-4-oxoretinoic acid by nuclear magnetic reasonance, ultra violet, Infrared spectroscopy, and mass spectral analysis. Under the same conditions, but without light, a mixture of all-trans- and 13-cis-retinoic acid resulted. The corresponding methyl esters were obtained when methyl all-trans-retinoate was used in place of all-trans-retinoic acid.  相似文献   

18.
Data have been presented which indicate a positive relationship between thetrans-isomer content of a hydrogenated oil and the congeal point, Wiley melting-point, and solids index. It has also been shown that cottonseed oil and soybean oil undergo substantially the same type of reaction under identical hydrogenating conditions. This conclusion is based on the relationship oftrans-isomer formation to total reduction in unsaturation up to the point that equilibrium is reached and saturation of thetrans-isomers occurs. This equilibrium was noted at between 60–70 iodine value. The relationship oftrans-isomer formation to the total reduction in double bonds can be expressed as the hydrogenation index. This is a reliable indication of the type of reaction taking place up to the point where appreciable hydrogenation of thetrans-isomers occur.  相似文献   

19.
Fourier transform near-infrared (FT-NIR) spectroscopy was evaluated as a means of simultaneously determining the cis and trans content, iodine value (IV), and saponification number of neat fats and oils. Reference values for these parameters were obtained from oils using a previously developed mid-FTIR Edible Oil Analysis Package. Two partial least squares calibrations were developed for a 5-mm heated flow cell, the first a process calibration based on hydrogenated soybean samples and the second a more generalized calibration based on an oil samplematrix containing many oil types and designed to remove any correlations among the parameters measured. Each calibration performed well with its own validation samples; however, only the noncorrelated calibration was able to analyze oil samples accurately from a variety of sources. It was found that NIR analysis maintained the internal consistency between cis/trans and IV, and the accuracy and reproducibility of the predictions were on the order of ±1.5 and ±1.0 units, respectively, for all parameters evaluated. FT-NIR is shown to be a very workable means of determining cis/trans/IV values and saponification number for edible fats and oils, and it provides a rapid alternative to the commonly used chemical and physical methods presently employed in the industry.  相似文献   

20.
The hydrogenation of canola oil was studied using palladium black as a potential catalyst for producing partially hydrogenated fats with lowtrans-isomer content. Pressure (150\s-750 psig) appeared to have the largest effect ontrans-isomer formation. At 750 psig, 90 C and 560 ppm metal concentration, a maximum of 18.7%trans isomers was obtained at IV 53. A nickel catalyst produces about 50%rans isomers at the same IV. For palladium black, the linolenate and linoleate selectivities were 1.2 and 2.7, respectively. The maximum level oftrans isomers observed ranged from 18.7% to 42.8% (150 psig). Temperature (30\s-90 C) and catalyst concentration (80\s-560 ppm) affected the reaction rate with little effect ontrans-isomer formation and selectivities. At 250 psig and 50 C, supported palladium (5% Pd/C) appeared to be twice as active as palladium black. At 560 ppm Pd, 5% Pd/C produced 30.2%trans (IV 67.5), versus 19.0%trans for palladium black (IV 68.9). Respective linoleate selectivities were 15 and 6.6, while linolenate selectivities were approximately unity. Analysis of the oil samples by neutron activation showedapproximately a 1 ppm, Pdresidue after filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号