首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zr-based MCM-41 mesoporous molecular sieves (ZrMCM-41) were successfully synthesized by microwave irradiation method and hydrothermal method, respectively. The obtained samples were characterized by XRD, TEM, FT-IR and N2 physical adsorption. The results show that the samples synthesized by the two different methods both possess typical hexagonal mesoporous structure of MCM-41 and high specific surface areas (over 800 m2/g). After calcination at 750°C for 3 h or hydrothermal treatment at 100°C for 6 days, the mesoporous structure of the samples still retained, however, the mesoporous ordering is poor. Under the comparable conditions, the reaction time required in the synthesis of ZrMCM-41 by microwave irradiation method was greatly reduced, and microwave irradiation method is eco-friendly and is easy to operate.  相似文献   

2.
《Materials Letters》2003,57(24-25):3839-3842
The thermal stability of Si–MCM-41 in different atmosphere (air, O2, NH3, N2, and Ar) has been investigated in the present work; as-synthesized Si–MCM-41 was heat-treated at 800–1030 °C for 6–12 h in the selected atmosphere. Based on absorption–desorption isotherms and low-angle XRD measurement of the treated samples, it was found that the thermal stability varied greatly in different atmosphere. As-synthesized Si–MCM-41 retained mesoporous structure up to 1010 °C in NH3, N2, and Ar environment, but in air and O2 environment, the highest thermal stable temperature of mesoporous structure in Si–MCM-41 was no more than 900 °C.  相似文献   

3.
SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 °C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.  相似文献   

4.
Cu2O thin films were first deposited using magnetron sputtering at 200 °C. The samples produced were then annealed by a rapid thermal annealing (RTA) system at 550 °C in a protective atmosphere with or without the addition of oxygen. After annealing, various Cu2O and CuO films were formed. These films were characterized, as a function of oxygen concentration in RTA, using UV-VIS photometer, four-point probe, and Hall measurement system. The results show that these Cu2O thin films annealed at 550 °C with more than 1.2% oxygen added in the protective argon atmosphere would transform into the CuO phase. Apparently, the results of RTA are sensitive to the amount of oxygen added in the protective atmosphere. The resistivity of these Cu2O thin films decreases with the increase in the oxygen amount in the annealing atmosphere, most likely due to the increase in carrier mobility. In addition, Cu2O/ZnO (doped with AlSc) junctions were produced at 200 °C and annealed. The rectifying effect of P-N junction disappeared after annealing, probably due to the damage of p-n interface, which directly causes current leakage at the junction.  相似文献   

5.
MCM-41 and Al–MCM-41 has been synthesized using cetyl-trimethylammonium bromide (CTAB) surfactant as template and adding the silica precursor to aqueous solutions containing CTAB. The obtained solids were calcined at 600 °C for 4 h. HPW heteropolyacid supported on the mesoporous were prepared using the incipient wetness method. The characterization of materials was performed by X-ray diffraction, Transmission Electron Microscopy, N2 adsorption, 29Si Cross Polarization–Magic Angle Spinning and 27Al MAS NMR. Results showed that the hexagonal structure is obtained in both cases. The Aluminium species are located inside an extra-framework. The impregnation reduces the surface area of the mesoporous materials especially of the Al–MCM-41 suggesting a participation of aluminium during the impregnation. HPW is well dispersed in the mesoporous materials and is located inside the pores interacting with the silanol group of the pores wall. 27Al MAS NMR measurements have showed that the impregnation causes the removal of the non-framework aluminium.  相似文献   

6.
M.F. Al-Kuhaili 《Vacuum》2008,82(6):623-629
Thin films of copper oxide were deposited by thermal evaporation of cuprous oxide (Cu2O) powder. The substrates were either unheated or heated to a temperature of 300 °C. The films were also annealed in air at a temperature of 500 °C for 3 h. The films were characterized by X-ray photoelectron spectroscopy, X-ray diffraction and UV-visible spectrophotometry. The effects of the substrate temperature and post-deposition annealing on the chemical, structural and optical properties of the films were investigated. As-deposited films on unheated substrates consisted of mixed cupric oxide (CuO) and Cu2O phases, with a higher concentration of the Cu2O phase. However, the films deposited on heated substrates and the annealed films were predominantly of the CuO phase.  相似文献   

7.
Highly ordered mesoporous materials were successfully synthesized by using the iron ore tailings as the silica source and n-hexadecyltrimethyl ammonium bromide as the template. The samples were detail characterized by powder X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and N2 physisorption. The as-synthesized materials had high surface area of 527 m2 g−1 and the mean pore diameter of 2.65 nm with a well-ordered two-dimensional hexagonal structure. It is feasible to prepare mesoporous MCM-41 materials using the iron ore tailings as precursor.  相似文献   

8.
In this study, electrochromic properties of cuprous oxide nanoparticles, self-accumulated on the surface of a sol-gel silica thin film, have been investigated by using UV-visible spectrophotometry in a lithium-based electrolyte cell. The cuprous oxide nanoparticles showed a reversible electrochromic process with a thin film transmission reduction of about 50% in a narrow wavelength range of 400-500 nm, as compared to the bleached state of the film. Using optical transmission measurement, we have found that the band gap energy of the films reduced from 2.7 eV for Cu2O to 1.3 eV for CuO by increasing the annealing temperature from 220 to 300 °C in an N2 environment for 1 h. Study of the band gaps of the as-deposited, colored and bleached states of the nanoparticles showed that the electrochromic process corresponded to a reversible red-ox conversion of Cu2O to CuO on the film surface, in addition to the reversible red-ox reaction of the Cu2O film. X-ray photoelectron spectroscopy indicated that the copper oxide nanoparticles accumulated on the film surface, after annealing the samples at 200 °C. Surface morphology of the films and particle size of the surface copper oxides have also been studied by atomic force microscopy analysis. The copper oxide nanoparticles with average size of about 100 nm increased the surface area ratio and surface roughness of the silica films from 2.2% and 0.8 nm to 51% and 21 nm, respectively.  相似文献   

9.
A series of Ni1−xCuxFe2O4 (0 ≤ x ≤ 0.5) spinels were synthesized employing sol-gel combustion method at 400 °C. The decomposition process was monitored by thermal analysis, and the synthesized nanocrystallites were characterized by X-ray diffraction, transmission electron microscopy, infra-red and X-ray photoelectron spectroscopy. The decomposition process and ferritization occur simultaneously over the temperature range from 280 °C to 350 °C. TEM indicates the increase of lattice parameter and particle size with the increase of copper content in accordance with the XRD analysis. Cu2+ can enter the cubic spinel phase and occupy preferentially the B-sites within x = 0.3, and redundant copper forms CuO phase separately. A broadening of the O 1s region increases with the increment of copper content compared to pure NiFe2O4, showing different surface oxygen species from the spinel and CuO. Cu2+ substitution favors the occupancy of A-sites by Fe3+.  相似文献   

10.
Super-microporouos silicon material with high hydrothermal stability denoted as MCM-41-T has been prepared from mesoporous MCM-41 by high temperature treatment. The structural and chemical property of MCM-41-T has been characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, infrared spectroscopy and 29Si MAS NMR. The characteristic results show that Si-OH groups are forced to condense by high temperature treatment, and the pore size of MCM-41-T is around 1.5 nm in the super-microporous range. Compared with the original material MCM-41, the hydrothermal stability of MCM-41-T has been significantly enhanced.  相似文献   

11.
In this study, mesoporous silica nanoparticles (MSNs) composed of MCM-41 were synthesized and modified with amine groups (i.e., NH2) to form NH2/MCM-41, which was loaded with curcumin (CUR) to form CUR@NH2/MCM-41 to create an efficient carriers in drug delivery systems (DDSs). The three samples (i.e., pure MCM-41, NH2/MCM-41, and CUR@NH2/MCM-41) were characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transition electron microscopy (TEM), and a thermogravimetric analyzer (TGA). The study investigated the effect of the carrier dose, CUR concentration, pH, and contact time on the drug loading efficiency (DLE%) by adsorption. The best DLE% for MCM-41 and NH2/MCM-41 was found to be 15.78 and 80%, respectively. This data demonstrated that the Langmuir isotherm had a greater correlation coefficient (R2) of 0.9840 for MCM-41 and 0.9666 for NH2/MCM-41 than the Freundlich and Temkin isotherm models. A pseudo-second-order kinetic model seems to fit well with R2 = 0.9741 for MCM-41 and R2 = 0.9977 for NH2/MCM-41. A phosphate buffer solution (PBS) with a pH of 7.4 was utilized to study CUR release behavior. As a result, the full release after 72 h was found to have a maximum of 74.1% and 29.95% for pure MCM-41 and NH2/MCM-41, respectively. The first-order, Weibull, Hixson-Crowell, Korsmeyer-Peppas, and Higuchi kinetic release models were applied to releasing CUR from CUR@MCM-41 and CUR@NH2/MCM-41. The Weibull kinetic model fit well, with R2 = 0.944 and 0.96912 for pure MCM-41 and NH2/MCM-41, respectively.  相似文献   

12.
The electrocatalytic CO2 reduction reaction (CO2RR) is an attractive technology for CO2 valorization and high-density electrical energy storage. Achieving a high selectivity to C2+ products, especially ethylene, during CO2RR at high current densities (>500 mA cm−2) is a prized goal of current research, though remains technically very challenging. Herein, it is demonstrated that the surface and interfacial structures of Cu catalysts, and the solid–gas–liquid interfaces on gas-diffusion electrode (GDE) in CO2 reduction flow cells can be modulated to allow efficient CO2RR to C2+ products. This approach uses the in situ electrochemical reduction of a CuO nanosheet/graphene oxide dots (CuO C(O)) hybrid. Owing to abundant Cu O C interfaces in the CuO C(O) hybrid, the CuO nanosheets are topologically and selectively transformed into metallic Cu nanosheets exposing Cu(100) facets, Cu(110) facets, Cu[n(100) × (110)] step sites, and Cu+/Cu0 interfaces during the electroreduction step,  the faradaic efficiencie (FE) to C2+ hydrocarbons was reached as high as 77.4% (FEethylene ≈ 60%) at 500 mA cm−2 . In situ infrared spectroscopy and DFT simulations demonstrate that abundant Cu+ species and Cu0/Cu+ interfaces in the reduced CuO C(O) catalyst improve the adsorption and surface coverage of *CO on the Cu catalyst, thus facilitating C C coupling reactions.  相似文献   

13.
In soap-free latex media, poly(styrene-methyl methacrylate)/MCM-41 core/shell composite microspheres have been fabricated by adding silicate source in batches. In this process, silicate species and the surfactant micelles were self-assembled into 2-dimensional hexagonal arrangement on the surface of P(St-MMA) microspheres. Hollow MCM-41 microspheres were obtained via removing polymer core by solvent. XRD, TEM, IR and N2 adsorption-desorption analysis were applied to characterize products. The results showed that average diameter and wall thickness of hollow MCM-41 microspheres is about 240 nm and 20 nm, respectively. Results of N2 adsorption-desorption indicate that hollow MCM-41 microspheres possess a highly ordered mesoporous structure and a narrow pore distribution with a mean value of 2.34 nm.  相似文献   

14.
The interface reactions between an /gb-sialon ceramic and Cu, Cu2O or a Cu-Cu2O mixture have been studied. A fully dense sialon ceramic material prepared by pressureless sintering at 1775 ° C with 6 wt% Y2O3 as sintering aid, were coldpressed together with Cu, Cu2O or Cu-Cu2O mixtures into cylindrical tablets. These samples were heat treated at 700, 850 and 1000 ° C in evacuated silica tubes. The reaction zones formed between the sialon and the powder compacts were studied in a SEM equipped with an EDS system. No reaction between copper and sialon ceramic could be detected in spite of prolonged heat treatment at 1000 ° C. Cu2O reacted with the ceramic at 850 and 1000 ° C to form a glass containing copper and all the other sialon components. The interaction between the sialon material and the Cu-Cu2O powder compacts was characterized by a redox reaction. The sialon was thus oxidized to SiO2 and N2 while Cu2O was reduced to copper. A glass phase containing silicon, aluminium, yttrium and copper was also formed in the reaction.  相似文献   

15.
As anodes of Li‐ion batteries, copper oxides (CuO) have a high theoretical specific capacity (674 mA h g?1) but own poor cyclic stability owing to the large volume expansion and low conductivity in charges/discharges. Incorporating reduced graphene oxide (rGO) into CuO anodes with conventional methods fails to build robust interaction between rGO and CuO to efficiently improve the overall anode performance. Here, Cu2O/CuO/reduced graphene oxides (Cu2O/CuO/rGO) with a 3D hierarchical nanostructure are synthesized with a facile, single‐step hydrothermal method. The Cu2O/CuO/rGO anode exhibits remarkable cyclic and high‐rate performances, and particularly the anode with 25 wt% rGO owns the best performance among all samples, delivering a record capacity of 550 mA h g?1 at 0.5 C after 100 cycles. The pronounced performances are attributed to the highly efficient charge transfer in CuO nanosheets encapsulated in rGO network and the mitigated volume expansion of the anode owing to its robust 3D hierarchical nanostructure.  相似文献   

16.
With pulsed laser deposition, the Cu0.04Zn0.96O thin films are grown at 600 °C under three different oxygen pressures, namely PO2 = 0.00, 0.02, and 1.00 Pa. X-ray diffraction shows single-phase material for the samples grown under PO2 = 0.00 and 1.00 Pa and CuO secondary phase for the PO2 = 0.02 Pa grown sample. The observation of satellite structures in the Cu 2p core level X-ray photoelectron spectroscopy (XPS) spectra suggest the presence of Cu2+ and CuO secondary phases in the samples grown at PO2 = 0.02 and 1.00 Pa. The sample grown under vacuum (PO2 = 0.00 Pa) shows mixed Cu oxidation state of 1 + or 2 + . The sample grown without oxygen is n-type and those grown with oxygen are highly insulating. The insulating sample grown at PO2 = 0.02 Pa shows highest magnetization due to possible collective behavior of Cu2+ – O v – Cu2+ network in the form of bound magnetic polaron (BMP) and ferromagnetic superexchange interaction coming from uncompensated surface spins of the Cu ions in the CuO secondary phase. Both delocalized electrons (~3.32 × 1018) due to oxygen deficient defects and reduced amount of effective Cu2+ ions discredit the BMP model for this vacuum grown sample, and magnetism is suggested due to O v and presence of possible CuO secondary phase.  相似文献   

17.
《Advanced Powder Technology》2019,30(12):3231-3240
In this study, a composite mesoporous silica material MCM-41 (Mobil composite matter) is impregnated with monoethanolamine (MEA) as primary linear amine, benzylamine (BZA) as primary cyclic amine and N-(2-aminoethyl) ethanolamine (AEEA) as secondary diamine and the effects of amine loading, amine type, CO2 partial pressure and adsorption temperatures on the CO2 adsorption are investigated. The CO2 adsorption performances of MCM-41 and amine impregnated MCM-41 samples are studied up to 1 bar of CO2 partial pressure and the temperature range of 25–60 °C. The amine loadings (% impregnation) are optimized for maximum CO2 uptake. The materials are characterised using N2 adsorption/desorption isotherm, Fourier Transform Infrared (FT-IR) Spectroscopy, Thermogravimetric (TGA) and Elemental (CHNS) analysis. The materials have shown good structural and thermal stability. The MCM-41-40%AEEA, MCM-41-40%BZA and MCM-41-50%MEA samples are exhibited the CO2 adsorption capacity of 2.34 mmol/g (102.98 mg/g), 0.908 mmol/g (39.96 mg/g) and 1.47 mmol/g (64.69 mg/g) respectively. The CO2 uptake of MCM-41-40%AEEA is 3.5 times higher than that of in MCM-41 (0.68 mmol/g) and it is also the highest reported value as di-amine impregnated MCM-41. The results indicated that the adsorption capacities of the materials (MCM-41 and MCM-41-40%AEEA) are decreased with an increase of adsorption temperature in the range of 25–60 °C. The Freundlich, Langmuir, Sips and Toth isotherm models are used to correlate and predict experimental CO2 adsorption data. The Sips and Toth isotherm models are found to be better fitted with the experimental data. The isosteric heat of adsorption of MCM-41 and MCM-41-40%AEEA samples are also calculated from Van’t Hoff plot using iSorbHP-win instrumental analysis software in the experimental temperature range.  相似文献   

18.
A simple methodology has been demonstrated to synthesize various nanocrystalline Cu2O materials assisted by composite surfactant system, SDS and Tween 80 using the polyol method. Glycolaldehyde prepared in situ by heating ethylene glycol solvent at 160 °C for 2 h, was utilized as the reducing agent. The relative ratio of the two surfactants was manipulated to achieve different Cu2O morphologies, e.g. nanocrystalline Cu2O flowers, hollow spheres consisting of holes and ring type structure. The FT-IR spectroscopy confirmed that the SDS and Tween 80 moieties were indeed present on the surface as capping agents in order to stabilize the surface nanocrystallites by the co-ordinative interactions between the oxygen atoms of Tween 80 and SDS and the Cu atoms at the surface of the synthesized Cu2O particles. These oxygen atoms eventually encourage the oxidation of the surface Cu atoms to form a thin CuO layer, presence of which on the surface was corroborated by the XPS measurements. Sputtering of the samples was also carried out to remove the surface CuO thin layer and expose the inner Cu2O. These nanomaterials were then investigated for their potential applications in photocatalytic degradation of Rhodamine B dye.  相似文献   

19.
The Bi-(Pb)-Ca-Sr-Cu-O ceramics of typical cation composition 2 (0.4) 223, presintered at 800°C, are formed by arc melting and rapidly cooling the 2021 superconducting phase, CaO, and Cu2O. The arc-melted samples sintered in air at 840°C exhibit a solid-state structural transformation of the components and a mixture of 2122 and 2223 superconducting phases, and small amounts of Ca2CuO3, Ca2PbO4, and CuO appear. When the arc melting is used as an intermediate stage in the preparation of the high-T c superconductors in this system, a significant increase in density (from 3.7 to 5.7 g/cm3) and in critical current density (from 28 to 60 A/cm2 in zero field and at liquid-nitrogen temperature) is observed, while the critical temperature remains practically unchanged (–104 K).  相似文献   

20.
Hierarchical MCM-41/MFI composites were synthesized through ion-exchange of as-made MCM-41 type mesoporous materials with tetrapropylammonium bromide and subsequent steam-assisted recrystallization. The obtained samples were characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis, FT-IR, 1H–13C CP/MAS and nitrogen adsorption–desorption. The XRD patterns show that the MCM-41/MFI composite possesses both ordered MCM-41 phase and zeolite MFI phase. SEM and TEM images indicate that the recrystallized materials retained the mesoporous characteristics and the morphology of as-made mesoporous materials without the formation of bulky zeolite, quite different from the mechanical mixture of MCM-41 and MFI structured zeolite. Among others, lower recrystallization temperature and the introduction of the titanium to the parent materials are beneficial to preserve the mesoporous structure during the recrystallization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号