首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Yue W  Li X  Liu J  Li Y  Yu X  Deng B  Wan T  Zhang G  Huang Y  He W  Hua W  Shao L  Li W  Yang S 《The Science of the total environment》2006,368(2-3):916-925
PM(2.5) samples were collected simultaneously at three representative areas (central city, industrial area and clean air suburban) of Shanghai City. Their morphologies and elemental compositions were determined by scanning electron microscopy coupled with energy analysis (SEM-EDX). The particles were classified into four groups based on morphology and elemental composition. Soot aggregates and spherical fly ash particles were the two dominant types and they were identified as originating from automobile exhaust, metallurgical industry and coal combustion. The size distribution of the particles showed that most had diameters in the range of 0.2-1.4 microm. Individual particles were measured by synchrotron radiation micro-beam X-ray fluorescence (micro-SXRF) and the micro-SXRF spectra were obtained. Pattern recognition techniques, which took the micro-SXRF spectrum of a single aerosol particle as its fingerprint, were used to identify the origins of the particles. Seven source types were identified. They were: metallurgical industry, vehicle exhaust, soil dust, coal combustion, diesel exhaust, oil combustion and motorcycle exhaust. Metallurgical industry, automobile exhaust, and coal combustion were recognized to be the main pollution sources of PM(2.5) in the air of Shanghai City.  相似文献   

2.
Laboratory experiments were conducted to determine the responses of a prototype smoke detector and a commercially available photoelectric smoke detector to smoke particles generated from various combustion sources. The prototype smoke detector combines optical scattering measurements with ionization chamber measurements in order to reduce/eliminate nuisance alarms due to the presence of airborne dusts or diesel exhaust particles. The commercially available smoke detector is designed for use in harsh environments where airborne dust represents a major problem due to both nuisance alarms and detector contamination. In the experiments, the responses of the two detectors were measured when exposed to smoke particles from the exhaust of a diesel engine and from a variety of fire sources, including wood, coal, styrene butadiene rubber, and No. 2 diesel fuel. For the solid fuels, data were obtained for both smoldering and flaming combustions. This report describes the experiments, their results, and the use of these results as they apply to early-warning fire sensors capable of the rapid and reliable detection of fires in atmospheres that may or may not be contaminated by either airborne dust or the products produced from diesel engines.  相似文献   

3.
A year-long assessment of cross-border air pollution was conducted in the eastmost section of the US-Mexico border region, known as the Lower Rio Grande Valley, in South Texas. Measurements were conducted on the US side and included fine particle mass (PM2.5) and elemental composition, volatile organic compounds (VOCs) and meteorology. Wind sector analyses of chemical tracers and diagnostic ratios, in addition to principal component analysis (PCA), were initially applied to assess cross-border and overall air shed influences. Linear-angular correlation statistics [Biometrika, 63, (1976), 403-405] and nonparametric multiple comparisons between wind sectors were computed with the particle element data using principal component scores from PCA to determine the direction of source classes. Findings suggest crustal particles and salts carried or stirred by sea breeze winds from a southerly and southeasterly direction from the Gulf of Mexico heavily influenced the elemental composition of the particulate samples. Pair-wise comparisons of wind directions for the principal component scores suggest possible oil combustion influences from utilities or boilers coming from the south and possible coal combustion influences from the north and northwest. The techniques discussed can provide a methodology to assess future ambient levels and cross-border influences in the Valley as conditions change.  相似文献   

4.
The concentrations of ambient air polycyclic aromatic hydrocarbons (PAHs) were measured simultaneously in an industrial area (Taichung Industrial Park, TIP) and suburban area (Tunghai University, THU) in central Taiwan, Taichung. A total of samples were collected simultaneously at the two sites between August 2002 and March 2003. Particle-bound PAHs (p-PAHs) were collected on quartz filters and gas-phase PAHs (g-PAHs) on glass cartridges using polyurethane foam sampler, respectively. Both types of samples were extracted with dichloromethane/n-hexane mixture (50/50, v/v) for 24 h, then the extracts were subjected to gas chromatography/mass spectrometric analysis. Moreover, the roadside dust particle PAHs composition were also collected and analyzed at TIP, THU and traffic road sampling sites. The five main road lines in Taichung City were selected as traffic road sampling sites. Correlation studies between PAHs concentrations and meteorological parameters were revealed that temperature has greater effects (P>0.6) than other meteorological parameters such as wind speed, relative humidity and atmospheric pressure on g-PAHs and p-PAHs. PAHs sources were resolved by using principal component analysis and diagnostic ratios. The major sources of PAHs were combustion, traffic vehicle exhaust (diesel and gasoline engine), incinerator and industrial stationary sources at both sampling sites in central Taiwan.  相似文献   

5.
Apportionment of urban particulate matter (PM) to sources is central for air quality management and efficient reduction of the substantial public health risks associated with fine particles (PM(2.5)). Traffic is an important source combustion particles, but also a significant source of resuspended particles that chemically resemble Earth's crust and that are not affected by development of cleaner motor technologies. A substantial fraction of urban ambient PM originates from long-range transport outside the immediate urban environment including secondary particles formed from gaseous emissions of mainly sulphur, nitrogen oxides and ammonia. Most source apportionment studies are based on small number of fixed monitoring sites and capture well population exposures to regional and long-range transported particles. However, concentrations from local sources are very unevenly distributed and the results from such studies are therefore poorly representative of the actual exposures. The current study uses PM(2.5) data observed at population based random sampled residential locations in Athens, Basle and Helsinki with 17 elemental constituents, selected VOCs (xylenes, trimethylbenzenes, nonane and benzene) and light absorbance (black smoke). The major sources identified across the three cities included crustal, salt, long-range transported inorganic and traffic sources. Traffic was associated separately with source categories with crustal (especially Athens and Helsinki) and long-range transported chemical composition (all cities). Remarkably high fractions of the variability of elemental (R(2)>0.6 except for Ca in Basle 0.38) and chemical concentrations (R(2)>0.5 except benzene in Basle 0.22 and nonane in Athens 0.39) are explained by the source factors of an SEM model. The RAINS model that is currently used as the main tool in developing European air quality management policies seems to capture the local urban fraction (the city delta term) quite well, but underestimates crustal particle levels in the three cities of the current study. Utilizing structural equation modelling parallel with traditional principal component analysis (PCA) provides an objective method to determine the number of factors to be retained in a model and allows for formal hypotheses testing.  相似文献   

6.
Influence of residential wood combustion on local air quality   总被引:1,自引:0,他引:1  
The importance of wood combustion to local air quality was estimated by measuring different air pollutants and conducting chemical mass balance modelling. PM10, PM2.5, PAHs and VOC concentrations in ambient air were measured in a typical Finnish residential area. Measurements were conducted in January-March 2006. For some compounds, wood combustion was clearly the main local source at this site. The effect of wood combustion was more clearly seen for organic compounds than for fine particle mass. For fine particles, background concentrations dominated. However, very high, short-lived concentration peaks were detected, when the wind direction and other weather conditions were favourable. For organic compounds, the effect of wood combustion was seen in diurnal and in two-week average concentrations. PAH-concentrations were often several times higher at the residential area than in the background. Benzene concentrations showed similar diurnal pattern as the use of wood and benzene/toluene ratios indicated that wood combustion is the most important source. A chemical mass balance model was used for studying the effect of wood combustion on the measured concentrations of VOCs. Model results showed that the main local sources for VOCs at Kurkim?ki are wood combustion and traffic. Wood combustion was clearly the most important source for many compounds (e.g., benzene).  相似文献   

7.
Atmospheric aerosols from seven rural sites in northern Vietnam, east of Hanoi, were sampled and analyzed. The aim of the study was to evaluate trace elemental and black carbon (BC) concentrations in fine particles (PM(2.5)) and to investigate the influence of the Pha Lai power plant and other pollution sources on regional air quality. Seven measurement stations were set up at selected rural sites and a campaign consisting of 12 two-day measurement periods was conducted from the end of May until the end of October 2000. At each location a pair of samplers was installed consisting of a cyclone loaded with Teflon filters and a modified Millipore air monitoring cartridge loaded with glass fibre filters. The obtained samples were analyzed for trace elements by Energy Dispersive X-ray Fluorescence (EDXRF), while a black smoke detector was used for BC analysis. Seventeen trace elements were analyzed; Br, Ca, Cl, Cr, Cu, Fe, K, Mn, Ni, Pb, Rb, S, Se, Sr, Ti, V and Zn and their concentrations evaluated. The results showed that BC, Ca, Cl, Fe, K and S dominated in the sampled atmospheric aerosols. The measured concentrations of the potentially hazardous trace elements Cr, Mn, Ni and Pb were all below the limits defined by Vietnamese standards of ambient air quality. Statistical evaluations indicated that coal and heavy fuel oil combustion were major sources of atmospheric pollutants in the area and that biomass burning and road transport had a marked influence on regional air quality. It was concluded that the Pha Lai power plant was the major source of coal combustion emissions. Trace element emissions originating from river transportation were suggested as another major source of atmospheric pollutants. The results indicate that the elemental concentrations in PM(2.5) are strongly influenced by seasonal variations. Further measurements are required to identify the impact of long-range transported continental air masses on the air quality of the investigated rural area.  相似文献   

8.
The potential benefits of combining the speciated PM(2.5) and VOCs data in source apportionment analysis for identification of additional sources remain unclear. We analyzed the speciated PM(2.5) and VOCs data collected at the Beacon Hill in Seattle, WA between 2000 and 2004 with the Multilinear Engine (ME-2) to quantify source contributions to the mixture of hazardous air pollutants (HAPs). We used the 'missing mass', defined as the concentration of the measured total particle mass minus the sum of all analyzed species, as an additional variable and implemented an auxiliary equation to constrain the sum of all species mass fractions to be 100%. Regardless of whether the above constraint was implemented and/or the additional VOCs data were included with the PM(2.5) data, the models identified that wood burning (24%-31%), secondary sulfate (20%-24%) and secondary nitrate (15%-20%) were the main contributors to PM(2.5). Using only PM(2.5) data, the model distinguished two diesel features with the 100% constraint, but identified only one diesel feature without the constraint. When both PM(2.5) and VOCs data were used, one additional feature was identified as the major contributor (26%) to total VOC mass. Adding VOCs data to the speciated PM(2.5) data in source apportionment modeling resulted in more accurate source contribution estimates for combustion related sources as evidenced by the less 'missing mass' percentage in PM(2.5). Using the source contribution estimates, we evaluated the validity of using black carbon (BC) as a surrogate for diesel exhaust. We found that BC measured with an aethalometer at 370 nm and 880 nm had reasonable correlations with the estimated concentrations of diesel particulate matters (r>0.7), as well as with the estimated concentrations of wood burning particles during the heating seasons (r=0.56-0.66). This indicates that the BC is not a unique tracer for either source. The difference in BC between 370 and 880 nm, however, correlated well exclusively with the estimated wood smoke source (r=0.59) and may be used to separate wood smoke from diesel exhaust. Thus, when multiple BC related sources exist in the same monitoring environment, additional data processing or modeling of the BC measurements is needed before these measurements could be used to represent the diesel exhaust.  相似文献   

9.
Particle size distribution data collected between September 1997 and August 2001 in Erfurt, Germany were used to investigate the sources of ambient particulate matter by positive matrix factorization (PMF). A total of 29,313 hourly averaged particle size distribution measurements covering the size range of 0.01 to 3.0 microm were included in the analysis. The particle number concentrations (cm(-3)) for the 9 channels in the ultrafine range, and mass concentrations (ng m(-3)) for the 41 size bins in the accumulation mode and particle up to 3 microm in aerodynamic diameter were used in the PMF. The analysis was performed separately for each season. Additional analyses were performed including calculations of the correlations of factor contributions with gaseous pollutants (O(3), NO, NO(2), CO and SO(2)) and particle composition data (sulfate, organic carbon and elemental carbon), estimating the contributions of each factor to the total number and mass concentration, identifying the directional locations of the sources using the conditional probability function, and examining the diurnal patterns of factor scores. These results were used to assist in the interpretation of the factors. Five factors representing particles from airborne soil, ultrafine particles from local traffic, secondary aerosols from local fuel combustion, particles from remote traffic sources, and secondary aerosols from multiple sources were identified in all seasons.  相似文献   

10.
Wood smoke exposure has been associated with adverse respiratory health outcomes, with much of the current research focused on wood smoke from domestic heating and cooking. This study examined the association between respiratory symptoms and outdoor wood smoke in Launceston, Tasmania, where ~ 30% of homes use wood burners for domestic heating. This ecological study examined data from participants of the 2004 Tasmanian Longitudinal Health Study postal survey and compared the prevalence of respiratory symptoms in Launceston (n = 601) with that in Hobart (n = 1071), a larger Tasmanian city with much less wood smoke. Multivariate logistic regression models were used to investigate the associations of interest while adjusting for gender, atopy, history of allergic disease and current smoking status. There were no significant differences in symptom prevalence between Launceston and Hobart. Two subgroup analyses, which examined participants with pre-existing chronic respiratory disease, and those who reported actively using a wood burner in their home, also did not find significant differences. Any impact of wood smoke on non-specific respiratory symptoms might have been overshadowed by other important determinants of respiratory health, such as vehicle exhaust and tobacco smoking, or were too small to have been detected. However, the lack of detectable differences in symptom prevalence might also reflect the success of regulatory action by local governments to reduce wood smoke emissions in Launceston. The results of other epidemiological studies support an association between ambient wood smoke exposure and adverse respiratory health. Further investigations of wood smoke exposure in Australian settings are needed to investigate the lack of significant associations found in this study, especially studies of indoor air quality and health impacts in children and elderly populations.  相似文献   

11.
摘 要:光电式火灾烟雾探测器是目前民用飞机货舱使用的主流火灾探测器,是保障飞机安全运行的关键,该探测器是基于烟雾颗粒对光的散射信号来进行报警的,但是由于空气中悬浮颗粒物(水蒸气或灰尘等)也具有散射效应,同样会触发火灾探测器发生报警,这种原理上的缺陷造成的误报情况时有发生。通过对飞机货舱典型燃烧物瓦楞纸片、榉木和棉绳的蓝光散射功率(表征为表面积浓度)、红外光散射功率(表征为体积浓度)和颗粒物索特平均粒径火灾特征参数进行分析,为复合探测器的研发优化火灾特征参数。结果表明:在常压条件下,蓝光和红外光对颗粒物浓度的变化有很好的响应,索特平均粒径可以区分火灾烟雾颗粒和非火灾烟雾颗粒,可以有效降低误报率。  相似文献   

12.
For the analysis of the adverse effects of smoke on health, it is essential to determine the amount and location of smoke particles deposited in the respiratory tract. However, the deposition characteristics of the particles are influenced by their morphology and size distribution. Moreover, the real-time particle size distribution during inhalation is important for determining smoke particle deposition in the lungs. Smoke particles generated under different fire conditions differ in their physical and chemical characteristics. Thus, there is a need to adopt international standard methods for characterizing the particles generated in fire. In the present study, the size distributions together with morphology of smoke particles were measured for each fire stage by using the steady-state tube furnace method given in ISO/TS 19700. The size distributions of smoke particles from wood and polypropylene (PP) were measured in real time by using an electric low-pressure impactor (ELPI+), and their morphologies were analyzed using transmission electron microscopy (TEM).  相似文献   

13.
Air pollution problems in major cities within the developing countries need to be studied. There are scanty measurements from the developing countries on airborne particles despite their adverse implications to human health, visibility and climate. One of the major sources of anthropogenic air pollution is energy production. Energy demand is bound to increase as population increases, especially in major cities of the world. Fine particles, particles with aerodynamic diameter < or = 2.5 microm, are mainly anthropogenic and these particles were collected in the capital cities of Vietnam and Kenya. A cyclone airborne particle collector was used to sample in Hanoi during the months of May to October 2000 and a dichotomous virtual impactor in Nairobi in February 2000. The samples were analysed for elemental content by an energy dispersive X-ray fluorescence (EDXRF) spectrometer. S, Cl, K and Fe exceeded atmospheric concentrations of 100 ng m(-3) at both cities. Atmospheric elemental concentrations in both Hanoi and Nairobi were orders of magnitude higher than their respective rural towns. Traffic, biomass and waste burning emissions were implicated as the main sources of air pollution in Nairobi, while coal combustion and road transport were the major sources in Hanoi. Regional air pollution had a major impact over Hanoi, whereas an influence of that kind was not identified in Nairobi. Pb and other toxic elements had concentration levels below WHO guideline, however, the two cities are threatened by future high levels of air pollution due to the high rate of population growth. Long-term measurements are required in both areas to evaluate if the alarming situation is deteriorating.  相似文献   

14.
Due to reductions in domestic usage, legislation and changes in fuel use, coal derived particulates in the UK urban atmosphere have been significantly reduced. However, a large increase in road usage and an expansion in the use of diesel engines, has meant that the majority of particulates, now present in the urban atmosphere, originate from vehicle exhausts. Particulate matter, resulting from coal combustion, has been recorded as being present in black patinas observed on some historic stone buildings and monuments and has been associated with accelerated weathering of stone surfaces as a result of enhanced gypsum formation. In contrast, the effects of particulates resulting from vehicle exhaust on stone are much less understood. To investigate this, a comparative study was undertaken using the technique of microcatchments under ambient atmospheric conditions. This compared the elemental composition and volume of precipitation runoff from Portland Limestone coated with three different particulate treatments. Treatments consisted of coal and diesel particulates, both separately and in combination. Combining these treatments attempts to investigate any synergistic effects that may occur when coal derived particulates are overlain by layers formed by particulates from more contemporary sources. It was found that diesel-coated samples were much darker in appearance and showed a significant reduction (P<0.05) in the overall rate of weathering loss when compared to untreated samples. Microcatchment runoff volume was reduced from diesel-coated Portland Limestone compared to untreated stone. Enhanced surface temperatures may be increasing the rate of moisture loss from the pore network between rainfall events. Since, generally, the pores must be full before runoff can occur, the reduction may be due to the differential volume of empty pore space between diesel-coated and untreated Portland Limestone.  相似文献   

15.
提出了一种提高带上盖车辆基地机械排烟效果的方法,即设置顶部接风管。采用CFD 流体力学数值模拟软件对顶部接风管的排烟效果进行研究。设置了4 种开孔方式、3 种顶部接风管开孔个数以及不同排烟量,通过测量带上盖车辆基地烟气层高度、盖板下方温度、能见度、CO 浓度进行对比分析。结果表明:4 种开孔方式排烟效果从好到差依次为顶部接风管四周侧部开孔、顶部开孔、侧部开孔、底部开孔;顶部接风管开孔个数减少对排烟效果无明显影响,但会增大排烟口风速;设置顶部接风管会提升带上盖车辆基地的机械排烟量,能明显提升其排烟效果。  相似文献   

16.
Lim JM  Jeong JH  Lee JH  Moon JH  Chung YS  Kim KH 《Indoor air》2011,21(2):145-155
In this study, elemental composition of PM2.5 and the status of indoor/outdoor pollution were investigated in a commercial building near a roadside area in Daejeon, Korea. A total of 60 parallel PM2.5 samples were collected both on the roof (outdoor) and in an indoor office of a building near a highly congested road during the spring and fall of 2008. The concentrations of 23 elements were analysed from these PM2.5 samples using instrumental neutron activation analysis. PM2.5 levels in indoor environment (47.6 ± 16.5 μg/m(3)) were noticeably higher than the outdoor levels (37.7 ± 17.2 μg/m(3)) with the I/O concentration ratio of 1.37 ± 0.33 [correlation coefficient (r) = 0.89, P < 0.001]. Principal component analysis results coincidently showed the predominance of sources such as soil dust, traffic, oil/coal combustion and road dust for both indoor and outdoor microenvironments. An isolated source in the indoor environment was assigned to environmental tobacco smoke (ETS) with high factor loading of Ce, Cl, I, K, La and Zn. The overall results of our study indicate that the sources of indoor constituents were strongly dependent on outdoor processes except for the ones affected by independent sources such as ETS. PRACTICAL IMPLICATIONS: An improved understanding of the factors affecting the indoor PM2.5 concentration levels can lead to the development of an efficient management strategy to control health risks from exposure to indoor PM2.5 and related toxic components. A comparison of our comprehensive data sets indicated that most indoor PM2.5 and associated elemental species were strongly enriched by indoor source activities along with infiltration of ambient outdoor air for a naturally ventilated building.  相似文献   

17.
Exposure to traffic-related pollution during childhood has been associated with asthma exacerbation, and asthma incidence. The objective of the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) is to determine if the development of allergic and respiratory disease is associated with exposure to diesel engine exhaust particles. A detailed receptor model analyses was undertaken by applying positive matrix factorization (PMF) and UNMIX receptor models to two PM2.5 data sets: one consisting of two carbon fractions and the other of eight temperature-resolved carbon fractions. Based on the source profiles resolved from the analyses, markers of traffic-related air pollution were estimated: the elemental carbon attributed to traffic (ECAT) and elemental carbon attributed to diesel vehicle emission (ECAD).Application of UNMIX to the two data sets generated four source factors: combustion related sulfate, traffic, metal processing and soil/crustal. The PMF application generated six source factors derived from analyzing two carbon fractions and seven factors from temperature-resolved eight carbon fractions. The source factors (with source contribution estimates by mass concentrations in parentheses) are: combustion sulfate (46.8%), vegetative burning (15.8%), secondary sulfate (12.9%), diesel vehicle emission (10.9%), metal processing (7.5%), gasoline vehicle emission (5.6%) and soil/crustal (0.7%). Diesel and gasoline vehicle emission sources were separated using eight temperature-resolved organic and elemental carbon fractions. Application of PMF to both datasets also differentiated the sulfate rich source from the vegetative burning source, which are combined in a single factor by UNMIX modeling. Calculated ECAT and ECAD values at different locations indicated that traffic source impacts depend on factors such as traffic volumes, meteorological parameters, and the mode of vehicle operation apart from the proximity of the sites to highways. The difference in ECAT and ECAD, however, was less than one standard deviation. Thus, a cost benefit consideration should be used when deciding on the benefits of an eight or two carbon approach.  相似文献   

18.
Sampling and analytical methods for gas- and particulate-phase polycylic aromatic hydrocarbons (PAH) in indoor air were evaluated in a controlled field study. Using 12-h, 25-m3 samples, gas-phase PAH were collected on XAD-4 resin and analyzed by GC-MS, and particulate-phase PAH were collected in filters and analyzed for by HPLC with fluorescence detection. Tests were conducted in homes and office buildings without active combustion sources and with gas stoves, wood stoves and cigarette smoking as controlled sources. Indoor concentrations, outdoor concentrations and air-exchange rates were simultaneously measured. The precisions of the concentrations were evaluated using collocated sample pairs collected indoors and outdoors. Net emission rates were calculated for the gas-phase PAH. Net emissions of these compounds were measured in buildings without active combustion sources. Environmental tobacco smoke was identified as a significant source of both gas- and particulate-phase PAH.  相似文献   

19.
Bark and wood samples were taken from the same individuals of Scots pine (Pinus sylvestris L.) from a polluted area close to a Cu-Ni smelter in Harjavalta and from some relatively unpolluted areas in western Finland. The samples were analysed by thick-target particle induced X-ray emission (PIXE) after preconcentration by dry ashing at 550 degrees C. The elemental contents of pine bark and wood were compared to study the impact of heavy metal pollution on pine trees. By comparison of the elemental contents in ashes of bark and wood, a normalisation was obtained. For the relatively clean areas, the ratios of the concentration in bark ash to the concentration in wood ash for different elements were close to 1. This means that the ashes of Scots Pine wood and bark have quite similar elemental composition. For the samples from the polluted area the mean concentration ratios for some heavy metals were elevated (13-28), reflecting the effect of direct atmospheric contamination. The metal contents in the ashes of pine bark and wood were also compared to recommendations for ashes to be recycled back to the forest environment. Bark from areas close to emission sources of heavy metal pollution should be considered with caution if aiming at recycling the ash. Burning of bark fuel of pine grown within 6 km of the Cu-Ni smelter is shown to generate ashes with high levels of Cu, Ni as well as Cd, As and Pb.  相似文献   

20.
This paper describes results obtained in a program investigating the physical and chemical properties of particulates generated during the burning of three commonly used materials. Small samples of wood, rigid urethane foam and polyvinyl chloride plastic have been burned under non-flaming conditions at room temperature in a ventilated combustion products test chamber. Continuous measurements have been made of smoke particle average size, particle size distributions, particulate optical density, particulate volume and mass concentrations, and particulate index of refraction utilizing an aerosol sampling system and an in situ scattered and attenuated light optical system. Non-flaming tests have been run in different ventilation gas compositions and at three radiant heating levels in an attempt to simulate real-fire situations. A review of previous results obtained by the aerosol sampling system is followed by presentation of new data taken with the in situ optical system. This data shows that average smoke particle sizes tend to vary during a test. Furthermore, particle sizes are generally larger for tests run at the highest heating rates. Available data also indicates that the physical characteristics of the smoke particles are relatively for non-flaming conditions. These results are consistent with previously reported aerosol sampling data. Also, continuous optical density measurements are presented, which allow the determination of the relative tendency of a smoldering material to obscure vision under different conditions. Finally, scanning electron microscope photographs provide new information on the detailed nature of smoke particles generated during non-flaming combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号