首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical vapor deposited (CVD) low-k films using tri methyl silane (3MS) precursors and tetra methyl cyclo tetra siloxanes (TMCTS) precursors were studied. Films were deposited by means of four processes, namely, O2, O2 + He process and CO2, CO2 + O2 process for 3MS and TMCTS precursors, respectively. Interfacial adhesion energy (Gc), of low-k/Si samples, as measured by a 4-point bending test displayed a linear relationship with film hardness and modulus. Fractography studies indicated two possible failure modes with the primary interface of delamination being either at low-k/Si or Si/epoxy interface. In the former, once delamination initiated at the low-k/Si interface, secondary delamination at the Si/epoxy and epoxy/low-k interfaces was also observed. Films with low hardness (<5 GPa) displayed a low Gc (<10 J/m2) with an adhesive separation of Si/epoxy, epoxy/low-k, and low-k/Si interfaces. Whereas, films of high hardness (>5 GPa) displayed interfacial energies in excess of 10 J/m2 with separation of Si/epoxy and epoxy/low-k interfaces, thus indicating excellent adhesion between the Si and low-k films. Films with high hardness have less carbon in the system causing it to be more “silicon dioxide” like and exhibiting better adhesion with the Si substrate.  相似文献   

2.
Silicon oxide material, which has low-refractive index and high isolation characteristic, has been extensively adopted into high-brightness LED structures. However, the interfacial delamination problem between GaP and SiO2 was observed in the high-brightness AlGalnP LED structure during fabrication process. It indicates that the weak adhesion strength of the GaP/SiO2 interface is a significant issue for manufacturing of LEDs. Therefore, in this study, the interfacial adhesion strength between SiO2 and III–V materials, such as GaP and GaAs, were measured by four-point bend test (4-PBT). In addition, the correspondence of the finite element models with the 4-PBT specimens was also established to predict the interfacial adhesion strength, G value, using the modified virtual crack closure technique (MVCCT) simulation technique. Comparing the predicted G value by MVCCT with experiment results of 4-PBT, the simulation results have good agreement with the experimental data.  相似文献   

3.
In order to study the chemical-mechanical polishing (CMP) characteristics of indium-tin oxide (ITO) thin film with a sufficient removal amount and a good planarity, the optimal CMP process conditions were determined by using a design of experiment (DOE) approach. The electrical and optical properties, such as current-voltage (I-V) curve and photoluminescence spectrum, were discussed in order to evaluate the possibility of the CMP application for an organic light emitting diode (OLED) device using an ITO film. The electrical I-V characteristics and optical properties of ITO thin film were improved after the CMP process using optimized process conditions compared to that of as-deposited thin film before the CMP process.  相似文献   

4.
Aluminum nitride (AlN) thin films with c-axis preferred orientation have been prepared by reactive direct-current (DC) magnetron sputtering. The degree of preferred crystal orientation, the cross-sectional structure, and the surface morphology of AlN thin films grown on Si (100) substrates at various substrate temperatures from 60°C to 520°C have been investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Results show that the substrate temperature has a significant effect on the structural properties, such as the degree of c-axis preferred orientation, the full-width at half-maximum (FWHM) of the rocking curve, the surface morphology, and the cross-sectional structure as well as the deposition rate of the AlN thin films. The optimal substrate temperature is 430°C, with corresponding root-mean-square surface roughness (R rms) of 1.97?nm, FWHM of AlN (002) diffraction of 2.259°, and deposition rate of 20.86?nm/min. The mechanisms behind these phenomena are discussed. Finally, film bulk acoustic resonators based on AlN films were fabricated; the corresponding typical electromechanical coupling coefficient (k t 2 ) is 5.1% with series and parallel frequencies of 2.37?GHz and 2.42?GHz, respectively.  相似文献   

5.
Multilayer dielectric thin film edge filter has serious polarization sensitivity under oblique incidence. The cutoff-bands of the s-polarization and p-polarization light in conventional edge filter will separate obviously under 45° oblique inci- dence, which limits its application. Based on the two chosen materials TiO2 and SiO2, a novel stack structure is pro- posed to design the non-polarization short-wave-pass thin film edge filter. By using the (4H 4L 4H) as the matching layers, the polarization separation at 3 dB transmittance for the thin film edge filter cutoff-band is less than 1 nm at the incident angle of 45°. In this way, the non-polarization short-wave-pass edge filter is easily designed and fabricated.  相似文献   

6.
Phase change memories use a specific phase change material (PCMat) as a resistor element for information storage. To obtain good reliability and performances of the device, interface between PCMat and electrodes needs to be optimized.In this work, we study the adhesion between the electrode material and GeTe PCMat by a mechanical characterization (four-point bending). Our results show that a thin titanium interfacial layer drastically enhances the adhesion energy. Using X-Ray Diffraction and Secondary Ion Mass Spectroscopy, strong chemical interactions between titanium and tellurium is evidenced. In particular, after a 400 °C anneal, Ti3Te4 formation is observed. This chemical affinity probably explains the improvement of adhesion between the electrode and GeTe.  相似文献   

7.
As the electronics industry continues its efforts in miniaturizing the integrated circuit (IC), an IC chip with copper/low-k stacked back end of line (BEoL) structures has been developed for reducing RC delay in order to obtain high-speed signal communication. However, its reliability might become a concern due to the considerably lower adhesive strength as well as greater coefficient of thermal expansion (CTE) of the low-k materials. In this paper, the four-point bending technique is used to quantify the adhesion energy (GC). The global local finite element method, including the specified boundary condition (SBC) method and the multi-point constrain (MPC) method, is validated by the four-point bending experiment and is employed as a bridge to estimate the impact from package level to the deep sub-micron BEoL structure of the plastic ball grid array (PBGA) package. A crack driving force of 1.8 J/m2 acting on the BEoL structure is obtained when the curing process of the moulding compound is performed.  相似文献   

8.
Highly conducting transparent indium-doped zinc oxide (IZO) thin films have been achieved by controlling different growth parameters using radio frequency magnetron sputtering. The structural, electrical, and optical properties of the IZO thin films have been investigated for varied indium content and growth temperature (T G) in order to find out the optimum level of doping to achieve the highest conducting transparent IZO thin films. The highest mobility and carrier concentration of 11.5 cm2/V-s and 3.26 × 1020 cm?3, respectively, have been achieved in IZO doped with 2% indium. It has been shown that as T G of the 2% IZO thin films increase, more and more indium atoms are substituted into Zn sites leading to shift in (002) peaks towards higher angles which correspond to releasing the stress within the IZO thin film. The minimum resistivity of 5.3 × 10?4 Ω-cm has been achieved in 2% indium-doped IZO grown at 700°C.  相似文献   

9.
For 28 nm technological node, porous ultra low dielectric constant (p-ULK) film has been used as an insulator in Cu interconnection in the back-end of the line (BEOL). The interfacial adhesion between p-ULK film and SiCN (nitrogen doping silicon carbon) cap barrier layer played the important role for the package, wiring bond, chip package interaction (CPI), peeling, and reliability. In this work, the thin initial oxide and thin transition films were deposited in situ before depositing p-ULK film, which was used for improving the interfacial adhesion between p-ULK film and SiCN film, The ULK film with multilayer structure was characterized by secondary ion mass spectroscopy (SIMS) for examining multilayer structure, focused ion beam (FIB) and transmission electron microscope (TEM) for observing interface, and four-point bending (4-PB) for testing interfacial adhesion. Results indicated that the interfacial adhesion was obviously improved by adding initial oxide and transition layer before the deposited p-ULK film, which hardly impact the capacitance using single layer structure.  相似文献   

10.
Polishing debris generated by pad surface conditioning has been suspected as a major source of microscratches in the chemical–mechanical planarization (CMP) process. In this study, we investigated the pad debris generated by an in situ conditioning process during oxide CMP as one of the major scratch sources. We evaluated the relationship between the size of pad debris and the shape of microscratches on a wafer to find the cause of scratches. Pad debris was gathered in real time during the polishing process. Then, by transmission electron microscopy we observed a mixed layer of pad material and abrasive particles on the surface of the pad debris and the pad surface, which hardened the pad debris and pad surface. The results reveal a size range of pad debris that led to a minimum scratch count. Pad debris size smaller or larger than the minimum scratch region seems to cause higher scratch count due to the hardened pad surface and pad debris.  相似文献   

11.
An in-situ and cost-effective numerical–experimental approach for fatigue characterization of bi-material interfaces in microelectronic packages is presented. In this method using a sample-centered approach, a miniaturized sub-critical bending (MSCB) test setup is designed and fabricated based on the samples that are acquired directly from the production-line. Sub-critical crack growth (SCCG) is captured along the surface between molding compound (MC) and copper lead-frame (LF) in the samples prepared from Thin Quad Flat Package (TQFP). The toughness values such as critical (Gc) and sub-critical strain energy release rate (Gth) are measured. It is shown that crack propagation along the MC/LF interface is highly fatigue sensitive. In addition, fatigue–fracture tests under different isothermal conditions reveal that, the toughness values are higher in lower temperatures. The fractographical study of samples shows that, although some of the molding compound particles are left on the LF surface, the interfacial fracture is the dominant failure mode.  相似文献   

12.
The electrical contact is one of the main issues preventing semiconducting 2D materials to fulfill their potential in electronic and optoelectronic devices. To overcome this problem, a new approach is developed here that uses chemical vapor deposition grown multilayer graphene (MLG) sheets as flexible electrodes for WS2 field‐effect transistors. The gate‐tunable Fermi level, van der Waals interaction with the WS2, and the high electrical conductivity of MLG significantly improve the overall performance of the devices. The carrier mobility of single‐layer WS2 increases about a tenfold (50 cm2 V?1 s?1 at room temperature) by replacing conventional Ti/Au metal electrodes (5 cm2 V?1 s?1) with the MLG electrodes. Further, by replacing the conventional SiO2 substrate with a thin (1 µm) parylene‐C flexible film as insulator, flexible WS2 photodetectors that are able to sustain multiple bending stress tests without significant performance degradation are realized. The flexible photodetectors exhibited extraordinarily high gate‐tunable photoresponsivities, reaching values of 4500 A W?1, and with very short (<2 ms) response time. The work of the heterostacked structure combining WS2, graphene, and the very thin polymer film will find applications in various flexible electronics, such as wearable high‐performance optoelectronics devices.  相似文献   

13.
We report the fabrication process as well as material and electrical characterization of ultra thin body (UTB) thin film transistors (TFTs) for stackable nonvolatile memories by using in situ phosphorous doped low-temperature polysilicon followed by the chemical mechanical polishing (CMP) process. The resulting polysilicon film is about 13 nm thick with approximately 1019 cm−3 doping. Root mean square surface roughness below 1 nm is achieved. Metal nanocrystals and high-k dielectric are selected for storage nodes and tunneling barriers to achieve low operating voltages. The number density and average diameter of nanocrystals embedded in the gate stack are 7.5 × 1011 cm−2 and 5.8 nm, respectively. Furthermore, scanning transmission electron microscopy (STEM), convergent beam electron diffraction (CBED) and electron energy loss spectroscopy (EELS) are performed for material characterization. The dielectric constant of the (Ti, Dy)xOy film is 35, and the off-state leakage current at −1 V bias and 2.8 nm equivalent oxide thickness is 5 × 10−7 A/cm2. We obtain a memory window of about 0.95 V with ±6 V program/erase voltages. Our results show that UTB TFT is a promising candidate for the three-dimensional integration in high-density nonvolatile memory applications.  相似文献   

14.
《Microelectronics Reliability》2014,54(6-7):1133-1136
It was found that the electrical properties of CeO2/La2O3 stack are much better than a single layer La2O3 film. A thin CeO2 capping layer can effectively suppress the oxygen vacancy formation in the La2O3 film. This work further investigates the current conduction mechanisms of the CeO2 (1 nm thick)/La2O3 (4 nm thick) stack. Results show that this thin stacked dielectric film still has a large leakage current density; the typical 1−V leakage can exceed 1 mA/cm2 at room temperature. The large leakage current should be due to both the oxide defect centers as well as the film structure. Results show that at low electric field (<0.2 MV/cm), the thermionic emission induced current conduction in this stacked structure is quite pronounced as a result of interface barrier lowering due to the capping CeO2 film which has a higher k value than that of the La2O3 film. At higher electric fields, the current conduction is governed by Poole–Frenkel (PF) emission via defect centers with an effective energy level of 0.119 eV. The temperature dependent current–voltage characteristics further indicate that the dielectric defects may be regenerated as a result of the change of the thermal equilibrium of the redox reaction in CeO2 film at high temperature and the drift of oxygen under the applied electric field.  相似文献   

15.
Microwave surface resistance and critical current density are measured in Ag-doped YBa2Cu3O7−x thin films as a function of thickness of the film. The microwave surface resistance decreases monotonically as the thickness of the film is increased to an optimum thickness of 3000 Å. Beyond this optimum thickness the microstructure of the film deteriorates and the surface resistance increases as the thickness is further increased. Critical current density also increases as the thickness of the film is increased to the optimum thickness. The decrease in the value of surface resistance and an enhancement of Jc up to optimum thickness has been explained in terms of defects formed in the films during growth.  相似文献   

16.
ZnS thin films were deposited from four different zinc salts on glass substrates by chemical bath deposition method. Different anions of zinc salts affect the deposition mechanism and growth rate, which influence the properties of the films significantly. The ZnS thin film deposited from ZnSO4 is smoother, thicker, more homogeneous and compact, nearly stoichiometric, comparing with the films deposited from Zn(CH3COO)2 and Zn(NO3)2, and ZnCl2. The scratch test of bonding force between ZnS film and substrate shows that the ZnS film deposited from ZnSO4 has the most excellent adhesion with the substrate. The presence of SO42− promotes heterogeneous ZnS thin film growth via ions by ions deposition, and the films deposited from Zn(CH3COO)2 and Zn(NO3)2 are formed via clusters by clusters deposition. XRD and HRTEM results show that cubic ZnS films are obtained after single deposition, and the grain size of ZnS thin film deposited from ZnSO4 for 2.5 h is 10 nm. The average transmission of all films is greater than 85% in the wavelength ranging from 600 to 1100 nm, and the transmission of films deposited from ZnSO4 or Zn(NO3)2 for 1.5, 2 and 2.5 h is greater than 85% in the wavelength varying from 340 to 600 nm, which can enhance the blue response. The band gaps of all ZnS thin films are in the range of 3.88–3.99 eV. After annealing treatment, the mechanical and optical properties of the ZnS thin film deposited from ZnSO4 are improved significantly.  相似文献   

17.
A strain-introduced Mach-Zehnder interferometer (MZI) interleaver on lithium niobate (LiNbO3 ) is proposed. The structure of the strain-introduced waveguide is designed in detail, and is produced by depositing a SiO2 film on the annealed proton-exchanged LiNbO3 waveguide. Considering the sensitivities of the edge strain to the deposition temperature and the thickness of the SiO2 film, an optimum design of 50 GHz interleaver on this structure is given through analyzing the effective index changes for E x pq mode by finite difference method (FDM). The length of the bending waveguide in this interleaver is just two thirds of that in the conventional interleaver due to the high refractive index difference.  相似文献   

18.
The key component of ferroelectric random access memory (FeRAM) is a capacitor including a ferroelectric thin film and electrode materials. Platinum is one of the suitable metals which meet requirements such as low resistivity, high thermal stability, and good oxygen resistance. Generally, the ferroelectric and the electrode materials were patterned by a plasma etching process. The application possibility of chemical mechanical polishing (CMP) processes to the patterning of ferroelectric thin film instead of plasma etching was investigated in our previous study for improvement of an angled sidewall which prevents the densification of FeRAM. In this study, the characteristics of platinum CMP for FeRAM applications were also investigated by an approach as bottom electrode materials of ferroelectric material in CMP patterning. The removal rate was increased from 24.81 nm/min by the only alumina slurry (0.0 wt% of H2O2 oxidizer) to 113.59 nm/min at 10.0 wt% of H2O2 oxidizer. Electrochemical study of platinum and alumina slurry with various concentrations of H2O2 was performed in order to investigate the change of the removal rate. The decreased particle size in the alumina slurry with an addition of 10.0 wt% H2O2 oxidizer made the improved surface roughness of the platinum thin films. Micro-scratches were observed in all polished samples.  相似文献   

19.
The experimental results obtained on the dielectric strength EB of carbon doped silicon dioxide thin films for various film thicknesses using I-V measurements with metal-insulator-semiconductor structures suggest a new relationship between the film thickness d and the dielectric strength EB, i.e. EB∝(ddc)n. This inverse power law relationship indicates the existence of a critical thickness dc which may correspond to an ultimate thickness limit below which the rate of detrapping of electron charges exceeds the rate of trapping and no dielectric breakdown can be observed. The newly obtained inverse power law relationship appears to be general since it is also supported by other published dielectric strength data for both amorphous and polycrystalline polymer thin films.  相似文献   

20.
Nd/Nb-co-substituted Bi3.15Nd0.85Ti3?x Nb x O12 (BNTN x , x = 0.01, 0.03, 0.05 and 0.07) thin films were grown on Pt/Ti/SiO2/Si (100) substrates by chemical solution deposition. The effects of Nb content on the micro-structural, dielectric, ferroelectric, leakage current and capacitive properties of the BNTN x thin films were investigated. A low-concentration substitution with Nb ions in BNTN x can greatly enhance its remanent polarization (2P r) and reduce the coercive field (2E c) compared with those of Bi4Ti3O12 (BIT) thin film. The highest 2P r (71.4 μC/cm2) was observed in the BNTN0.03 thin film when the 2E c was 202 kV/cm. Leakage currents of all the films were on the order of 10?6 to 10?5 A/cm2, and the BNTN0.03 thin film has a minimum leakage current (2.1 × 10?6 A/cm2) under the high electric field (267 kV/cm). Besides, the CV curve of the BNTN0.03 thin film is the most symmetrical, and the maximum tunability (21.0%) was also observed in this film. The BNTN0.03 thin film shows the largest dielectric constant and the lowest dielectric loss and its maximum Curie temperature is 410 ± 5°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号