首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of various rapid thermal annealing used during the integration on the La2O3/HfO2 and HfO2/La2O3 stacks deposited by Atomic Layer deposition was analyzed. The consequences of lanthanum localization in such stacks on the evolution of the films during the rapid thermal annealing are investigated in term of morphology, crystalline structure, silicate formation and film homogeneity as a function of the depth. It appeared that the La2O3 location has an impact on the temperature of the quadratic phase formation which could be linked to the formation of SiOHfLa silicate and the resistance of the films to dissolution in HF 0.05 wt%.  相似文献   

2.
UV-assisted annealing processes for thin oxide films is an alternative to conventional thermal annealing and has shown many advantages such as low annealing temperature, reducing annealing time and easy to control. We report in this work the deposition of ultra-thin HfO2 films on silicon substrate by two CVD techniques, namely thermal CVD and photo-induced CVD using 222 nm excimer lamps at 400 °C. As-deposited films of around 10 nm in thickness with refractive indices from 1.72 to 1.80 were grown. The deposition rate measured by ellipsometry was found to be about 2 nm/min by UV-CVD, while the deposition rate by thermal CVD is 20% less than that by UV-CVD. XRD showed that the as-deposited HfO2 films were amorphous. This work focuses on the effect of post deposition UV annealing in oxygen on the structural, optical and electrical properties of the HfO2 films at low temperature (400 °C). Investigation of the interfacial layer by FTIR revealed that thickness of the interfacial SiO2 layer slightly increases with the UV-annealing time and UV annealing can convert sub-oxides at the interface into stoichiometric SiO2, leading to improved interfacial qualities. The permittivity ranges in 8–16, are lower than theoretical values. However, the post deposition UV O2 annealing results in an improvement in effective breakdown field and calculated permittivity, and a reduction in leakage current density for the HfO2 films.  相似文献   

3.
Tin Sulfide thin films were deposited on soda lime glass substrates at three different substrate temperatures using thermal evaporation technique. The impact of substrate temperature on the deposited films has been studied thoroughly. Surface morphology was modified with the substrate temperature. XRD spectra shows orthorhombic end-centered type SnS having (1 1 0) orientation. The crystallite size increases with the increase in the substrate temperature. At a high substrate temperature (450 °C) small grains form on the surface and crystallinity decreases. The effect of substrate temperature on optical and electrical properties has been studied using UV–Vis–NIR Spectrophotometer and Hall effect respectively. With the increase in the substrate temperature there is a substantial decrease in the transmittance and bandgap value. Refractive index (n), dielectric constant (ε1) and extinction co-efficient (k) have also been calculated for different substrate temperatures.  相似文献   

4.
The molecular beam epitaxial growth of low temperature (LT) GaAs films has been studied by real-time ellipsometry. A modification in a GaAs (001) surface by cooling under a specific As2 flux caused a change in the ellipsometry data. The thermocouple reading of this change was used as a signature to indicate the reproducible substrate temperature for the growth of LT-GaAs layers. The origin of this surface modification was studied by reflection high energy electron diffraction. The growth regimes of LT-GaAs layers were studied by real-time ellipsometry. The dielectric properties of the epitaxial layer and the critical thickness for epitaxial growth were extracted for various growth conditions. The microstructure beyond the critical point was found to be composed of amorphous as well as crystalline forms of GaAs.  相似文献   

5.
Metal oxide (SnO2, TiO2, In2O3, ZnO) sols are prepared by various sol–gel processes in such a way as to hinder the condensation reactions. The obtained sols are injected at 160 °C into a solution of tetradecene and dodecylamine, and kept under heating for different periods of time. Depending on the starting sol, variously crystallized oxide nanoparticles are obtained, whose phase compositions and chemical structure have been studied by X‐ray diffraction (XRD) and Fourier transform IR spectroscopy. The elimination of the organic residuals has been carried out by thermal treatment, and the thermal evolution of the nanoparticles has been studied by thermal analyses and Raman spectroscopy. High‐resolution transmission electron microscopy studies coupled with XRD measurements show that the thermal treatment does not markedly affect the particle size, which remains in the nanometer‐sized regime (from 3.5 to 8.5 nm, depending on the system), except in the case of ZnO. The thermally purified and stabilized powders, drop‐coated onto alumina substrates with pre‐deposited electrical contacts, have been tested as gas‐sensing devices, displaying outstanding sensing properties even at room temperature.  相似文献   

6.
The effects of post-deposition thermal exposure, at temperatures typical of MOS fabrication processes, on gate oxides formed by remote plasma enhanced chemical vapor deposition (RPECVD) is discussed. SiO2 films were prepared by (1) thermal oxidation of silicon at temperatures from 700 to 1150° C, and (2) by RPECVD at a substrate temperature of 350° C. Post deposition thermal processing was achieved by rapid thermal annealing for 100 sec from 850–1200° C. Film properties were studied by infrared spectroscopy (IR), ellipsometry, and by measurements of stress, capacitance voltage characteristics, and dielectric breakdown. Post-formation, thermal processing in the range of 850–1200° C was shown to modify both thermally grown and deposited oxides, but it has been shown that RPECVD films could be stabilized against post-deposition changes by rapid thermal annealing at temperatures of about 900° C for periods of at least 100 sec.  相似文献   

7.
The influence of the rapid thermal annealing (RTA) in vacuum at 1000 °C on the leakage current characteristics and conduction mechanisms in thermal Ta2O5 (7-40 nm) on Si has been studied. It was established that the effect of RTA depends on both the initial parameters of the films (defined by the oxidation temperature and film thickness) and annealing time (15-60 s). The RTA tends to change the distribution and the density of the traps in stack, and this reflects on the dielectric and leakage properties. The thinner the film and the poorer the oxidation, the more susceptible the layer to heating. The short (15 s) annealing is effective in improving the leakage characteristics of poorly oxidized samples. The RTA effect, however, is rather deleterious than beneficial, for the thinner layers with good oxygen stoichiometry. RTA modifies the conduction mechanism of Ta2O5 films only in the high-field region. The annealing time has strong impact on the appearance of a certain type of reactions upon annealing resulting to variation of the ratio between donors and traps into Ta2O5, causing different degree of compensation, and consequently to domination of one of the two mechanisms at high fields (Schottky emission or Poole-Frenkel effect). Trends associated with simultaneous action of annealing and generation of traps during RTA processing, and respectively the domination of one of them, are discussed.  相似文献   

8.
Boron implanted into n-type Si at 1015 cm−2 dose and energies from 500 eV to 1 keV was activated by annealing in nominally pure N2 and in N2 with small admixtures of O2. Effective process times and temperatures were derived by thermal activation analysis of various heating cycles. The lowest thermal budgets used “spike anneals” with heating rates up to 150°C/sec, cooling rates up to 80°C/sec, and minimal dwell time at the maximum temperature. Dopant activation was determined by sheet electrical transport measurements. Surface oxidation was characterized by film thickness ellipsometry. P-n junction depths were inferred from analysis of sheet electrical transport measurements and secondary ion mass spectroscopy profiles. Boron activation increases with boron diffusion from the implanted region. Electrical activation has a thermal activation energy near 5 eV, while boron diffusion has an activation energy near 4 eV. Surface oxide can retard boron diffusion into the ambient for high-temperature anneals.  相似文献   

9.
Nanopores in alumina membranes can serve as reaction vessels for the generation of nanosized gold particles. In addition, they enable a quasi one‐dimensional arrangement of nanoparticles, the optical properties of which can easily be investigated due to their transparency in the visible and near ultraviolet (UV) regions. Gold colloids inside the pores were produced either by thermal decomposition of [Au55(PPh3)12Cl6] clusters or by loading the pores with preformed colloids. The clusters as well as the colloids were transferred into the pores by simple immersion, and if necessary supported by applying a vacuum. The [Au55(PPh3)12Cl6] clusters were decomposed over the temperature range of 100 to 800 °C, using pores of different diameters. Transmission electron microscopy (TEM) was used to investigate the resulting nanoparticles. At decomposition temperatures up to ca. 500 °C, no specific influence of pore size or temperature was observed: 4–5 nm colloids were formed. However, temperatures > 500 °C resulted in colloids of up to 10–11 nm being formed. The optical properties of these and of preformed gold colloids in the membranes were studied. The extinction spectra of the colloidal assemblies generated from clusters exhibited two absorption peaks, caused by excitation of the plasmon resonance along the long and the short axes of the wire‐like arranged particles. The optical extinctions were measured with unpolarized and polarized light (0 and 90°). Depending on the angle of polarization, the polarized light caused either a blue‐ or a red‐shift in the absorption maximum. Theoretical calculations, using the so‐called generalized Mie theory and Maxwell Garnet theory, confirmed the experimentally observed behavior of these gold/alumina nanocomposites.  相似文献   

10.
Mn-Co-Ni-O作为一种重要的热探测材料被广泛应用于各类领域。作者使用研磨和烧结的方法制备了NiMn2O4和Mn1.56Co0.96Ni0.48O4块体材料。通过X射线衍射实验研究了两种块体的结晶情况,发现半径较大的Co阳离子的加入会导致块体结晶性变差。通过椭圆偏振光谱测试分别获得了NiMn2O4和Mn1.56Co0.96Ni0.48O4在紫外-远红外宽波段的光学常数和介电常数,发现添加离子后二者光学性质(光学常数的强度和峰位)具有一定区别。利用傅里叶光谱仪得到了两种材料的反射光谱,并与用光学常数计算出的数值进行了比较,最后评估了表面粗糙度对反射谱的影响。  相似文献   

11.
The properties of low-k SiCOH film deposited by plasma-enhanced chemical vapor deposition using trimethylsilane are reported here. The deposition process was performed at different temperatures from 200 to 400 °C. The influence of deposition temperature on the films were characterized using Fourier transform infrared spectroscopy (FTIR) to understand its impact on the studied properties. The films were annealed at ∼450 °C in an inert ambient after deposition in all the cases. The deposition rate decreases with increase in deposition temperature. The refractive index of the films increases as a function of deposition temperature. From FTIR spectra, OH-related bonds were not detected in films even when deposited at 200 °C. The Si-CH3 bonds were detected in all the films and decreased monotonically from 200 to 400 °C. All deposition conditions studied resulted in films with dielectric constant less than 3, the lowest being ∼2.7 when deposited at 200 °C. All films exhibited good thermal stability.  相似文献   

12.
Nickel oxide (NiO) nanoparticles were successfully synthesized by the reaction of nickel chloride with hydrazine at room temperature and thermal decomposition of the precursor nickel hydroxide (Ni(OH)2) nanoparticles. The products were characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, and UV–vis absorption spectroscopy. The result of thermogravimetric analysis showed that the Ni(OH)2 nanoparticles are calcinated at ~400 °C. The interactions between NiO nanoparticles and glucose have been studied using UV–vis absorption and fluorescence spectroscopy. The zeta-potential of NiO nanoparticles was used to gain insight about the interaction mode between NiO nanoparticles and glucose.  相似文献   

13.
In the present study, UV light activated gas sensor was investigated for Al/Al2O3/p-Si and Al/TiO2/Al2O3/p-Si samplesby atomic layer deposition method (ALD). Generally, in order to obtain the sensing performance, traditional metal oxide semiconductor gas sensors are operated at 100–400 °C. However, this temperature range limits their applications to flammable gases, and causes high power consumption. It is important to note that sensing performance experiments should have been performed at room temperature. With the support of UV light, gas sensors do not need to be heated and they can work at room temperature easily. For this purpose, electrical measurements have been performed on sensing performance with and without UV irradiation for dedection of NO2 gas. With the help of UV irradition, we obtained good sensitivity at the room temperature for Al/TiO2/Al2O3/p-Sistructure but under the same conditions no result was obtained for Al/Al2O3/p-Si structure. Without UV irradiation, there was no sensitivity for both.We observed that increasing of sensitivities at the room temperature show a direct effect of the light on the adsorbed oxygen ions. According to the relation of photocatalytic reaction and photoactivated gas sensing process, we concluded that TiO2 might be an acceptable sensor for detection of nitrogen dioxide (NO2) at room temperature under UV illumination.  相似文献   

14.
In this paper, we report a novel approach to study the potential use of multi-walled carbon naotubes (MWCNTs)–alumina (Al2O3) composite for heat sensing applications. This is achieved by optimizing the temperature coefficient of resistance (TCR) and thermal hysteresis of the composite. The composites were developed by uniform dispersion of MWCNTs in alumina in different concentrations following sol‐gel route. MWCNT loading in the alumina was found to be very effective to control the TCR as well as the hysteresis loss. The room temperature TCR versus MWCNTs concentration plot first shows an increasing trend with increase of MWCNTs concentration in the composite and reaches a threshold followed by drop in TCR. The maximum value of TCR that has been achieved is −0.56%/°C for 4 wt% MWCNTs content and is found to be ~1.5 times higher than the conventional metals and semiconductors. The hysteresis loss was found to decrease gradually to almost zero from 5 wt% onwards. The TCR and hysteresis variation is correlated with MWCNTs concentration dependent Raman, FESEM, EDS studies in the composite and there is a fair agreement in support of the observations.  相似文献   

15.
Low-k dielectrics prepared by CVD in the form of 200 nm thick layers on Si wafers were thermally treated at 410 °C and irradiated using UV lamps emitting photons of different wavelengths around 172 nm, 185 nm, and 222 nm. The treatment was performed in high vacuum and under a nitrogen atmosphere at various pressures ranging from 0.1 mbar up to 700 mbar. Subsequently, the samples were investigated using FTIR transmission spectroscopy, contact angle measurement, X-ray photoelectron spectrometry (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray reflectometry (XRR), surface acoustic wave spectrometry (SAW), and purged UV spectroscopic ellipsometry (PUVSE). It was found that for all UV wavelengths applied for curing the depth profiles of the chemical composition were homogeneous. For all properties evaluated, irradiation at wavelengths below 200 nm resulted in more pronounced changes than at longer wavelengths. Generally, a decrease in residual porogen content, conversion of the Si-O-Si bonds from cage to network/suboxide, degradation of Si-CH3 bonds, formation of H-SiO bonds, increase in surface energy, changes of element concentrations and of density, increase in Young’s modulus, and changes in dielectric constant were observed. These findings were confirmed by quantum-chemical calculations. With increasing nitrogen pressure the effects were more considerable. An attempt was undertaken to explain the effect of nitrogen pressure in course of the role of nitrogen molecules as collision partners.  相似文献   

16.
TaYOx-based metal-insulator-metal (MIM) capacitors with excellent electrical properties have been fabricated. Ultra-thin TaYOx films in the thickness range of 15-30 nm (EOT ∼ 2.4-4.7 nm) were deposited on Au/SiO2 (100 nm)/Si (100) structures by rf-magnetron co-sputtering of Ta2O5 and Y2O3 targets. TaYOx layers were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) to examine the composition and crystallinity. An atomic percentage of Ta:Y = 58.32:41.67 was confirmed from the EDX analysis while XRD revealed an amorphous phase (up to 500 °C) during rapid thermal annealing. Besides, a high capacitance density of ∼3.7-5.4 fF/μm2 at 10 kHz (εr ∼ 21), a low value of VCC (voltage coefficients of capacitance, α and β) have been achieved. Also, a highly stable temperature coefficient of capacitance, TCC has been obtained. Capacitance degradation phenomena in TaYOx-based MIM capacitors under constant current stressing (CCS at 20 nA) have been studied. It is observed that degradation depends strongly on the dielectric thickness and a dielectric breakdown voltage of 3-5 MV/cm was found for TaYOx films. The maximum energy storage density was estimated to be ∼5.69 J/cm3. Post deposition annealing (PDA) in O2 ambient at 400 °C has been performed and further improvement in device reliability and electrical performances has been achieved.  相似文献   

17.
This article is devoted to the inductance and resistance evolution of a coreless inductor depending on temperature. The inductors are fabricated of thin copper films deposited on an alumina substrate and characterized up to 10 MHz with an impedance analyzer. Two types of measurements are carried out: after inductor annealing and in a thermal cycle (25–200 °C).These measurements allow the effect of annealing and the thermal cycle on the inductance value as well as the resistance value to be determined. The inductance value depicts nearly no temperature dependence while the resistance value remains invariable when annealing up to 150 °C and increases for higher temperatures due to copper oxidation and the modification of the interface and volume properties of the copper. On the other hand, in the thermal cycle, the resistance value increases with increasing temperature and then decreases in the cooling phase to regain its initial value (R = R0). The resistance evolution is due to copper resistivity evolution depending on temperature. The inductors remain functional in a high temperature environment without any deterioration.  相似文献   

18.
Interaction of HfxTayN metal gate with SiO2 and HfOxNy gate dielectrics has been extensively studied. Metal-oxide-semiconductor (MOS) device formed with SiO2 gate dielectric and HfxTayN metal gate shows satisfactory thermal stability. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis results show that the diffusion depths of Hf and Ta are less significant in SiO2 gate dielectric than that in HfOxNy. Compared to HfOxNy gate dielectric, SiO2 shows better electrical properties, such as leakage current, hysteresis, interface trap density and stress-induced flat-band voltage shift. With an increase in post metallization annealing (PMA) temperature, the electrical characteristics of the MOS device with SiO2 gate dielectric remain almost unchanged, indicating its superior thermal and electrical stability.  相似文献   

19.
Titanium dioxide (TiO2) thin films were successfully prepared on quartz substrate by thermal oxidation of sputtered titanium film in air. The structure, composition, morphology and optical properties of oxidized TiO2 films were characterized by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy and UV-visible spectroscopy. Meanwhile, the photocatalytic activity of the films was evaluated on the basis of the degradation of methyl orange solution under UV irradiation. Ti films after oxidation present mainly in TiO2 form with a larger amount of adsorbed O2, and oxidation temperature has a strong impact on the crystal structure and properties of the films. A phase transformation of anatase to rutile for oxidized TiO2 films occurred in the temperature range of 700–800 °C. The energy band gap of oxidized TiO2 films decreased first and then increased with annealing temperature. Furthermore, TiO2 film oxidized at 600 °C exhibited the best photocatalytic activity due to suitable crystal phase and size. These results might contribute to the synthesis of metal oxide thin films with expectant structural morphology and properties by thermal oxidation methods.  相似文献   

20.
The concept of nanocomposite/nanostructuring in thermoelectric materials has been proven to be an effective paradigm for optimizing the high thermoelectric performance primarily by reducing the thermal conductivity. In this work, we have studied the microstructure details of nanocomposites derived by incorporating a semi-metallic Bi nanoparticle phase in Bi2Te3 matrix and its correlation mainly with the reduction in the lattice thermal conductivity. Incorporating Bi inclusion in Bi2Te3 bulk thermoelectric material results in a substantial increase in the power factor and simultaneous reduction in the thermal conductivity. The main focus of this work is the correlation of the microstructure of the composite with the reduction in thermal conductivity. Thermal conductivity of the matrix and nanocomposites was derived from the thermal diffusivity measurements performed from room temperature to 150 °C. Interestingly, significant reduction in total thermal conductivity of the nanocomposite was achieved as compared to that of the matrix. A detailed analysis of high-resolution transmission electron microscope images reveals that this reduction in the thermal conductivity can be ascribed to the enhanced phonon scattering by distinct microstructure features such as interfaces, grain boundaries, edge dislocations with dipoles, and strain field domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号