首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A fully integrated CMOS direct-conversion 5-GHz transceiver with automatic frequency control is implemented in a 0.18-/spl mu/m digital CMOS process and housed in an LPCC-48 package. This chip, along with a companion baseband chip, provides a complete 802.11a solution The transceiver consumes 150 mW in receive mode and 380 mW in transmit mode while transmitting +15-dBm output power. The receiver achieves a sensitivity of better than -93.7dBm and -73.9dBm for 6 Mb/s and 54 Mb/s, respectively (even using hard-decision decoding). The transceiver achieves a 4-dB receive noise figure and a +23-dBm transmitter saturated output power. The transmitter also achieves a transmit error vector magnitude of -33 dB. The IC occupies a total die area of 11.7 mm/sup 2/ and is packaged in a 48-pin LPCC package. The chip passes better than /spl plusmn/2.5-kV ESD performance. Various integrated self-contained or system-level calibration capabilities allow for high performance and high yield.  相似文献   

2.
A CMOS ultra-wideband impulse radio (UWB-IR) transceiver was developed in 0.18-/spl mu/m CMOS technology. It can be used for 1-Mb/s data communications as well as for precise range finding within an error of /spl plusmn/2.5 cm. The power consumptions of the transmitter and receiver for data communication are 0.7 and 4.0 mW, respectively. When an LNA operates intermittently through bias switching, the power consumption of the transceiver is only 1 mW. The range for data communication is 1 m with BER of 10/sup -3/. For ranging applications, the transmitter can reduce the power to 0.7 /spl mu/W for 1k pulses per second, and the receiver consumes little power. The transceiver design, all-digital transmitter, and intermittent circuit operation at the receiver reduce the power consumption dramatically, which makes the transceiver well suited for applications like sensor networks. The electronic field intensity is lower than 35 /spl mu/V/m, and thus the UWB system can be operated even under the current Japan radio regulations.  相似文献   

3.
A 5-GHz direct-conversion CMOS transceiver   总被引:1,自引:0,他引:1  
A CMOS transceiver fully compliant with IEEE 802.11a in the unlicensed national information infrastructure (UNII) band (5.15-5.35 GHz) achieves a receiver sensitivity of -5 dBm for 64-QAM (quadrature amplitude modulation) with an error vector magnitude (EVM) of -29.3 dB. A single-sideband mixing technique for local-oscillator signal generation avoids frequency pulling. Realized in 0.18-/spl mu/m CMOS and operating from 1.8-V power supply, the design consumes 171 mW in receive mode and 135 mW in transmit mode while occupying less than 13 mm/sup 2/.  相似文献   

4.
This paper describes a 3.6-Gb/s 27-mW transceiver for chip-to-chip applications. A voltage-mode transmitter is proposed that equalizes the channel while maintaining impedance matching. A comparator is proposed that achieves sampling bandwidth control and offset compensation. A novel timing recovery circuit controls the phase by mismatching the current in the charge pump. The architecture maintains high signal integrity while each port consumes only 7.5 mW/Gb/s. The entire design occupies 0.2 mm/sup 2/ in a 0.18-/spl mu/m 1.8-V CMOS technology.  相似文献   

5.
A CMOS gyrator low-IF filter for a dual-mode Bluetooth/ZigBee transceiver   总被引:4,自引:0,他引:4  
A low-IF polyphase channel filter for a dual-mode Bluetooth/Zigbee transceiver is described. Implemented in a standard 0.18-/spl mu/m CMOS process, the filter has a fifth-order 0.5-dB equiripple bandpass response and employs novel transconductor and preamplifier designs. It consumes /spl les/1 mW and achieves image band rejection /spl ges/44 dB, input referred noise of /spl les/52.2 /spl mu/Vrms and input referred third-order intermodulation intercept of /spl ges/20 dBVp, which gives a spurious-free dynamic range of /spl ges/68.4 dB. Chip area including its tuning circuit is 0.23 mm/sup 2/.  相似文献   

6.
This paper describes an adaptive bandwidth bus (ABB) architecture based on hybrid current/voltage mode repeaters for long global RC interconnect static busses that achieves high-data rates while minimizing the static power dissipation associated with current-mode signaling. Attaining a maximum aggregate bandwidth of 16 Gb/s (i.e., 1 Gb/s per line) across lossy on-chip interconnects spanning 1.75 cm in length, the bus core fabricated in 0.35 /spl mu/m CMOS technology dissipates approximately 93 mW with a supply of 2.5 V and signal activity of 0.5, equivalent to 5.71 pJ/bit. Experimental results using a 16-bit reference bus design that can be externally programmed to operate in voltage, current or adaptive modes indicate a 50% reduction in power dissipation over current-mode (CM) sensing, and an improvement in interconnection delay and signaling bandwidth of 35%-70% and 66% over voltage-mode (VM) sensing, respectively.  相似文献   

7.
This work presents a quad-channel serial-link transceiver providing a maximum full duplex raw data rate of 12.5Gb/s for a single 10-Gbit eXtended Attachment Unit Interface (XAUI) in a standard 0.18-/spl mu/m CMOS technology. To achieve low bit-error rate (BER) and high-speed operation, a mixed-mode least-mean-square (LMS) adaptive equalizer and a low-jitter delay-immune clock data recovery (CDR) circuit are used. The transceiver achieves BER lower than <4.5/spl times/10/sup -15/ while its transmitted data and recovered clock have a low jitter of 46 and 64 ps in peak-to-peak, respectively. The chip consumes 178 mW per each channel at 3.125-Gb/s/ch full duplex (TX/RX simultaneous) data rate from 1.8-V power supply.  相似文献   

8.
A full-duplex transceiver capable of 8-Gb/s data rates is implemented in 0.18-/spl mu/m CMOS. This equalized transceiver has been optimized for small area (329 /spl mu/m /spl times/ 395 /spl mu/m) and low power (158 mW) for point-to-point parallel links. Source-synchronous clocking and per-pin skew compensation eliminate coding bandwidth overhead and reduce latency, jitter, and complexity. This link is self-configuring through the use of automatic comparator offset trim and adaptive deskew. Comprehensive diagnostic capabilities have been integrated into the transceiver to provide link, interconnect, and circuit characterization without the use of external test equipment. With a resolution of 4 mV and 9 ps, these capabilities enable on-die eye diagram generation, equivalent time waveform capture, noise characterization, and jitter distribution measurements.  相似文献   

9.
Substantially reduced threshold current density and improved efficiency in long-wavelength (>1.4 /spl mu/m) GaAs-based lasers are reported. A 20/spl times/1220 /spl mu/m as-cleaved device showed a room temperature continuous-wave threshold current density of 580 A/cm/sup 2/, external efficiency of 53%, and 200 mW peak output power at 1.5 /spl mu/m. The pulsed threshold current density was 450 A/cm/sup 2/ with 1145 mW peak output power.  相似文献   

10.
A wireless bus for stacked chips was developed by utilizing inductive coupling among them. This paper discusses inductor layout optimization and transceiver circuit design. The inductive coupling is analyzed by a simple equivalent circuit model, parameters of which are extracted by a magnetic field model based on the Biot-Savart law. Given communication distance, transmit power, data rate, and SNR budget, inductor layout size is minimized. Two receiver circuits, signal sensitive and yet noise immune, are designed for inductive nonreturn-to-zero (NRZ) signaling where no signal is transmitted when data remains the same. A test chip was fabricated in 0.35-/spl mu/m CMOS technology. Accuracy of the models is verified. Bit-error rate is investigated for various inductor layouts and communication distance. The maximum data rate is 1.25 Gb/s/channel. Power dissipation is 43 mW in the transmitter and 2.6 mW in the receiver at 3.3 V. If chip thickness is reduced to 30 /spl mu/m in 90-nm device generation, power dissipation will be 1 mW/channel or bandwidth will be 1 Tb/s/mm/sup 2/.  相似文献   

11.
P-type doping is used to demonstrate high-To, low-threshold 1-3 /spl mu/m InAs quantum-dot lasers. A 5-/spl mu/m-wide oxide confined stripe laser with a 700-/spl mu/m-long cavity exhibits a pulsed T/sub 0/ = 213 K (196 K CW) from 0/spl deg/C to 80/spl deg/C. At room temperature, the devices have a CW threshold current of /spl sim/4.4 mA with an output power over 15 mW. The threshold at 100/spl deg/C is 8.4 mA with an output power over 8 mW.  相似文献   

12.
A low-voltage fully differential, voltage-controlled transconductor is described. The proposed transconductor achieves a wide input/control voltage range, with a highly linear transconductance factor and truly fully differential output currents. The transconductor is used to implement a G/sub m/-C adaptive forward equalizer (FE) for a 125 Mbps wire line transceiver using digital core transistors with channel length of no more than double the feature size in a typical digital CMOS 180-nm process and supply voltage as low as 1.6 V. The adaptive FE enables IEEE 1394b transceivers to operate over UTP-5 cables for up to 100 m in length. The transconductor stage occupies 1945 /spl mu/m/sup 2/ and consumes an average power of 418 /spl mu/w at 125 Mbps and 1.8-V supply.  相似文献   

13.
The first low-threshold 1.55 /spl mu/m lasers grown on GaAs are reported. Lasing at 1.55 /spl mu/m was observed from a 20/spl times/2400 /spl mu/m as-cleaved device with a room-temperature continuous-wave threshold current density of 579 A/cm/sup 2/, external efficiency of 41%, and 130 mW peak output power. The pulsed threshold current density was 550 A/cm/sup 2/ with >600 mW peak output power.  相似文献   

14.
A source-synchronous I/O link with adaptive receiver-side equalization has been implemented in 0.13-/spl mu/m bulk CMOS technology. The transceiver is optimized for small area (360 /spl mu/m /spl times/ 360 /spl mu/m) and low power (280 mW). The analog equalizer is implemented as an 8-way interleaved, 4-tap discrete-time linear filter. The equalization improved the data rate of a 102 cm backplane interconnect by 110%. On-die adaptive logic determines optimal receiver settings through comparator offset cancellation, data alignment of the transmitter and receiver, clock de-skew and setting filter coefficients for equalization. The noise-margin degradation due to statistical variation in converged coefficient values was less than 3%.  相似文献   

15.
This paper describes a high-performance WLAN 802.11a/b/g radio transceiver, optimized for low-power in mobile applications, and for co-existence with cellular and Bluetooth systems in the same terminal. The direct-conversion transceiver architecture is optimized in each mode for low-power operation without compromising the challenging RF performance targets. A key transceiver requirement is a sensitivity of -77 dBm (at the LNA input) in 54 Mb/s OFDM mode while in the presence of a GSM1900 transmitter interferer. The receiver chain achieves an overall noise figure of 2.8/3.2 dB, consuming 168/185 mW at 2.8 V for the 2.4/5GHz bands, respectively. Signal loopback and transmit power detection techniques are used in conjunction with the baseband modem processor to calibrate the transmitter LO leakage and the transceiver I/Q imbalances. Fabricated in a 70 GHz f/sub T/ 0.25-/spl mu/m SiGe BiCMOS technology for system-in-package (SiP) use, the dual-band, tri-mode transceiver occupies only 4.6 mm/sup 2/.  相似文献   

16.
A dual-band trimode radio fully compliant with the IEEE 802.11a, b, and g standards is implemented in a 0.18-/spl mu/m CMOS process and packaged in a 48-pin QFN package. The transceiver achieves a receiver noise figure of 4.9/5.6 dB for the 2.4-GHz/5-GHz bands, respectively, and a transmit error vector magnitude (EVM) of 2.5% for both bands. The transmit output power is digitally controlled, allowing per-packet power control as required by the forthcoming 802.11 h standard. A quadrature accuracy of 0.3/spl deg/ in phase and 0.05 dB in amplitude is achieved through careful analysis and design of the I/Q generation parts of the local oscillator. The local oscillators achieve a total integrated phase noise of better than -34 dBc. Compatibility with multiple baseband chips is ensured by flexible interfaces toward the A/D and D/A converters, as well as a calibration scheme not requiring any baseband support. The chip passes /spl plusmn/2 kV human body model ESD testing on all pins, including the RF pins. The total die area is 12 mm/sup 2/. The power consumption is 207 mW in the receive mode and 247 mW in the transmit mode using a 1.8-V supply.  相似文献   

17.
A fully integrated matrix amplifier with two rows and four columns (2-by-4) fabricated in a three-layer metal 0.18-/spl mu/m silicon-on-insulator (SOI) CMOS process is presented. It exhibits an average pass-band gain of 15 dB and a unity-gain bandwidth of 12.5 GHz. The input and output ports are matched to 50 /spl Omega/ using m-derived half sections; the measured S/sub 11/ and S/sub 22/ values exceed -7 and -12 dB, respectively. Integrated in 2.0/spl times/2.9mm/sup 2/, it dissipates 233.4 mW total from 2.4- and 1.8-V power supplies.  相似文献   

18.
This brief describes an adaptive bandwidth bus architecture based on hybrid current/voltage mode repeaters for long global RC interconnect static busses that achieves high-data rates while minimizing the static power dissipation associated with current-mode (CM) signaling. An experimental adaptive bandwidth bus test chip fabricated in AMI 1.6-/spl mu/m Bulk CMOS indicates a reduction in power dissipation of approximately 62% over CM sensing and an increase in maximum data rate of 40% over voltage-mode signaling.  相似文献   

19.
We present the first continuous-wave (CW) edge-emitting lasers at 1.5 /spl mu/m grown on GaAs by molecular beam epitaxy (MBE). These single quantum well (QW) devices show dramatic improvement in all areas of device performance as compared to previous reports. CW output powers as high as 140 mW (both facets) were obtained from 20 /spl mu/m /spl times/ 2450 /spl mu/m ridge-waveguide lasers possessing a threshold current density of 1.06 kA/cm/sup 2/, external quantum efficiency of 31%, and characteristic temperature T/sub 0/ of 139 K from 10/spl deg/C-60/spl deg/C. The lasing wavelength shifted 0.58 nm/K, resulting in CW laser action at 1.52 /spl mu/m at 70/spl deg/C. This is the first report of CW GaAs-based laser operation beyond 1.5 /spl mu/m. Evidence of Auger recombination and intervalence band absorption was found over the range of operation and prevented CW operation above 70/spl deg/C. Maximum CW output power was limited by insufficient thermal heatsinking; however, devices with a highly reflective (HR) coating applied to one facet produced 707 mW of pulsed output power limited by the laser driver. Similar CW output powers are expected with more sophisticated packaging and further optimization of the gain region. It is expected that such lasers will find application in next-generation optical networks as pump lasers for Raman amplifiers or doped fiber amplifiers, and could displace InP-based lasers for applications from 1.2 to 1.6 /spl mu/m.  相似文献   

20.
Continuous-wave (CW) as well as pulsed-laser emission from a midinfrared (/spl lambda/=7.92 /spl mu/m) IV-VI vertical-cavity surface-emitting laser at 1.8 K is presented. The high-finesse microcavity, containing PbSe as an active medium, was optically pumped with a carbon monoxide laser at a wavelength of 5.28 /spl mu/m (1894 cm/sup -1/) in either CW or Q-switched mode. The maximum achieved CW power was 4.8 mW and pulsed peak powers were up to 23 W. Linewidths are considerably narrower than 0.10 cm/sup -1/, corresponding to 0.6 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号