首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel optical instrument has been developed that estimates size segregated aerosol mass concentration (i.e., PM 10 , PM 4 , PM 2.5 , and PM 1 ) over a wide concentration range (0.001–150 mg/m 3 ) in real time. This instrument combines photometric measurement of the particle cloud and optical sizing of single particles in a single optical system. The photometric signal is calibrated to approximate the PM 2.5 fraction of the particulate mass, the size range over which the photometric signal is most sensitive. The electrical pulse heights generated by light scattering from particles larger than 1 micron are calibrated to approximate the aerodynamic diameter of an aerosol of given physical properties, from which the aerosol mass distribution can be inferred. By combining the photometric and optical pulse measurements, this instrument can estimate aerosol mass concentrations higher than typical single particle counting instruments while providing size information and more accurate mass concentration information than traditional photometers. Experiments have shown that this instrument can be calibrated to measure aerosols with very different properties and yet achieve reasonable accuracy.  相似文献   

2.

Single particle measurements were made in Baltimore, Maryland from March to December 2002 using a real-time single particle mass spectrometer, RSMS-3. Particle composition classes were identified that indicated how the aerosol composition changed with time. The results were compared with collocated instruments giving particle number concentrations and size distributions, sulfate, nitrate, organic, and elemental carbon mass concentrations and total mass. Examination of these measurements revealed several particulate matter (PM) events in which the 24 h averaged PM 2.5 mass exceeded 30 μ g/m 3 . Three of these events were studied in further detail by comparing number and mass concentrations obtained by RSMS-3 with standard methods. For all three events, the number concentrations obtained with RSMS-3 and a scanning mobility particle sizer were highly correlated (R 2 0.7). For the event characterized by a high sulfate mass concentration, the RSMS-3 provided an accurate measure of time-dependent nitrate and carbon mass concentrations, but not for sulfate and total mass. For the two events characterized by high carbon mass concentrations (one from a transcontinental wildfire and the other from stagnation during a period of high traffic), RSMS-3 provided an accurate measure of time-dependent nitrate mass, carbon mass and total mass when the aerosol was not dominated by particles outside the size limit of RSMS-3. While the time dependencies were strongly correlated, the absolute mass or number concentrations determined by RSMS-3 were sometimes off by a constant value, which permitted the relative detection efficiencies of some particle classes to be estimated. Other factors that inhibit reconciliation of mass- and number- based concentration measurements are discussed including the difficulty of detecting ammonium sulfate by laser ablation/ionization and the varying size ranges of different particle measurement methods.  相似文献   

3.
《分离科学与技术》2012,47(7-9):1139-1155
Abstract

Extractors equipped with structured packing are becoming more important in the chemical process industries. These devices provide high mass transfer efficiency and capacity relative to random packings and sieve trays. At the present time, many sieve tray extractors are being retrofitted with structured packings to enhance mass transfer efficiency and capacity. This paper will present a comparison of the performance of structured packing with sieve trays, some background on the commercial development of structured packings, and fundamental models required to design a liquid/liquid extractor equipped with structured packing.  相似文献   

4.
《分离科学与技术》2012,47(10):991-1008
Abstract

A previously described method for modeling the operation of ion-exchange columns by numerical integration on a microcomputer is modified to include the effect on elution curves of the finite rate of mass transport of solute ions between the resin and the aqueous phase. This is done by means of a time constant approach. The time constant is estimated as the smallest nonzero eigenvalue of a suitably-chosen diffusion problem. Results are presented showing the effect of the size of the time constant and the salt concentration in the eluting liquid on the shapes of the elution curves.  相似文献   

5.
Static charge present on a filter contributes substantial error to low-level mass measurements. The measurement and sources of static charge are not well understood and this article presents a fundamental method of static charge measurement. As predicted by other researchers, triboelectric charging was found to generate significant static charge on a filter when using 2007 Diesel particulate matter (PM) measurement protocols. Measurements made using our method indicate that PM filters are rapidly and effectively neutralized by 210 Polonuim ( 210 Po) sources. The neutralization of charge occurred exponentially with characteristic time constants (the time it takes for the charge on the filter to decay by 63%) of 0.4 and 0.7 s, depending on the strength of the source. The experimental neutralization time constants were consistent with theory. The charge remaining on highly charged 47 mm Teflon and TX40 filters after 5 s of neutralization with year old 210 Po sources biased the true filter mass by <1 μg when the filters were weighed with a 1 μg resolution Cahn microbalance.  相似文献   

6.
The presumed mandibular gland secretions from the workers and gamergates of two colonies of Streblognathus aethiopicus have been found to contain a homologous series of 3,5-dimethyl-2-alkylpyrazines (3,5-dimethyl-2-butylpyrazine, 1; 3,5-dimethyl-2-pentylpyrazine, 2; and 3,5-dimethyl-2-hexylpyrazine, 3). The structures of these compounds were determined from their mass spectra along with a comparison of their GC-FTIR spectra with those of all the isomers of a lower homolog. This is the first time that this combination of techniques has been applied to the study of insect pyrazines. The relative amounts and proportions of these compounds were different for gamergates and workers, with the latter containing 2–10 times more total pyrazines and having a higher proportion of 2 and 3. The possible significance of this finding is discussed.  相似文献   

7.
《分离科学与技术》2012,47(13):3113-3127
Abstract

The effect of zeolite bed depth on lead removal from aqueous solutions by the column method has been examined. The results indicate that the increase of bed depth delays the breakthrough point and exhaustion point, and increases the contact time of the zeolite – lead solution, and the height of the mass transfer zone, hz. The increase of the bed depth lowers the effect of axial dispersion on the mass transfer process. In order to predict the time necessary for exceeding the defined effluent concentration for a constant bed depth, the bed depth service time (BDST) approach has been used. Experimentally obtained breakthrough curves for the flow rate of 1 ml/min were used to derive the BDST approach equations. These equations were successfully used for modelling of the system for flow rates of 2 and 3 ml/min. The BDST equations have yielded modelled linear equations used for calculation of hz. The increase of the flow rate increases hz, which indicates that the zeolite–solution contact time is not sufficient. This may be attributed to the affect of axial dispersion on mass transfer on the solid-liquid interface.  相似文献   

8.
《分离科学与技术》2012,47(12-13):1489-1502
Abstract

As part of the Consolidated Fuel Reprocessing Program of the Oak Ridge National Laboratory, compact centrifugal contactors were designed and prototypes built for the Breeder Reprocessing Engineering Test (BRET) facility with a throughput capacity of 0.1 t/d of heavy metals. While the construction of BRET has been put on hold indefinitely, development of the 5.5-cm-diam centrifugal contactors has advanced due to the contactor's broad applicability in other areas of fuel reprocessing and liquid-liquid extraction. Due to the short residence time of the process fluids in a centrifugal contactor, it was necessary to measure the mass transfer efficiency for a typical process flowsheet. This was done with depleted uranium and 91Zr. The results of mass transfer tests with uranium and zirconiun are reported in this paper.  相似文献   

9.

Exposure to particles that have deposited on surfaces is common in occupational and residential environments. Lack of an accurate tool for assessing particle size distribution and loading (mass per unit area) on carpet fibers available for exposure contributes to the uncertainty associated with current risk assessment models. This research presents a new, direct image analysis method (IAM) for measuring particle size distribution and loading on carpet fibers. New and old carpet fibers loaded with Arizona Test Dust were used to test the method. Carpet fibers were removed from the bulk carpet, mounted on substrates, and scanning electron microscopy (SEM) images were collected. Particle size distribution and total mass were calculated from the processed images. The Arizona Test Dust (ATD) size distribution on fibers from two different carpets had mass median diameters of 3.6 ( ± 1.2) and 4.1 (±0.7) μm, similar to that for bulk ATD, 4.0 (± 0.5) μm. Total ATD mass available on new carpet fibers calculated by IAM were statistically correlated with the mass collected on micro-vacuum samples (R 2 = 0.95). Direct comparison of the aerodynamic diameters measured by IAM with those measured automatically by the SEM showed a slight negative bias due to image resolution problems for the smallest particles.  相似文献   

10.
Particle number, size, and composition information is important for constraining aerosol effects on air quality, climate, and health. The composition of particles, especially from vehicular sources, may contain insoluble black carbon (BC) materials that modify particle nucleating properties. In this study, we develop a method to provide quantitative and real-time information on the water-insoluble components found in near-road aerosol sources. A water-based condensation particle counter (W-CPC) and a butanol-based CPC (B-CPC) were used to measure the particle number concentration. Both instruments were coupled with a scanning mobility particle sizer (SMPS) to record the particle number and size data. Real time water-insoluble particle mass was estimated from the difference in particle number concentration between the two CPCs; theoretical water-insoluble mass was calculated from the ideal hygro- scopicity single parameter κ-values. This online method was calibrated with test compounds and then applied to data collected from a field study. Ambient aerosol was sampled from a monitoring station located 15 m from the I-710 freeway in Long Beach, California. The results show that near-roadway emissions contain water-insoluble (BC and non-BC) components. Particle number and BC concentrations increase after changes in wind direction near the freeway on both weekday and weekend measurements. Particles were less hygroscopic (κ?~?0.2) before changes in wind direction from downwind to upwind of the freeway (κ?>?0.6). Rapid changes in water-solubility can be captured with this technique. By assuming a two-component mixture, the water-insoluble mass fractions were inferred. BC shows a positive correlation with the water-insoluble mass however its presence may not account for the entire water-insoluble mass from the near-roadway source.

Copyright 2014 American Association for Aerosol Research  相似文献   

11.
ABSTRACT

A mathematical model has been developed to describe heat and mass transfer within materials undergoing shrinkage during drying. Both heat and mass transfer equations are solved simultaneously using a numerical technique A beat pump dryer has been used to conduct experiments to validate the model. Several samples were placed in the drver and after the commencement of each drying test one sample was taken oat at rceular time interval: The bone-dry mass of each piece was also determined. This enables to determine moisture distribution within the materials. Temperatures at different locations of the material were measured with thermocouples. The predicted temperature and moisture distribution within the material agreed fairly well with the experimental results.  相似文献   

12.
A vacuum ultraviolet (VUV) photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS) has been developed for real-time, quantitative chemical analysis of organic particles in laboratory environments. A nozzle of 0.12 mm orifice combined with an aerodynamic lens assembly and a three stage differential pumping system is used to sample particles at atmospheric pressure. The particles are vaporized on a thermal heater, and then the nascent vapor is photoionized by light generated with a RF-powered VUV lamp. A 0.41 V/cm electric field is used to drive the ions from the ionization region into the ion extraction region where a positive electric pulse repels the ions into a reflectron mass spectrometer. The mass resolution of the spectrometer is ~ 350 and the detection limit is ~ 400 μ m 3 . The signal intensities observed are linear with the mass concentration of aerosols. Oleic acid particles are well quantified with an uncertainty of 15% in mass concentrations ranging from 3.9 mg/m 3 to 392 mg/m 3 . The VUV-ATOFMS has substantial potential for the use in laboratory investigations on organic aerosol chemistry.  相似文献   

13.
Abstract

Detailed transient behaviors of mass and heat transfer processes are required to solve partial differential equations. When those partial differential equations are coupled, they are still difficult to solve in time domain. For linear mass and heat transfer processes, their Laplace-domain solutions are obtainable and, when they are approximated by rational polynomials in the Laplace variable s, the problems can be transformed to a set of ordinary differential equations solved easily in time domain for various initial conditions. In this approximation, the conventional Pade method based on the Tayler series expansion of the Laplace-domain solutions has been well developed and effective. However, for some mass and heat transfer processes in the semi-infinite geometry, the Pade approximation is not applicable because the Laplace-domain solutions involving exp(–sqrt(s)) are not analytic at s?=?0. Here, for such processes, analytical methods to approximate exp(–sqrt(s)) by rational polynomials are proposed. First it is expanded in series in terms of cosh–1(2ksqrt(s)) which converges fast. This series, when truncated, is analytic at s?=?0 and its Pade approximations are available. The proposed method enables partial differential equations be replaced to a set of ordinary differential equations, reducing computations considerably for coupled partial differential equations. Performances of the proposed method are illustrated with several realistic mass and heat transfer processes.  相似文献   

14.
By means of a newly designed portable aerosol mass spectrometer SPLAT (Single Particle Laser Ablation Time-of-flight mass spectrometer) for the analysis of single atmospheric aerosol particles we investigated the system performance in dependency on two different aerodynamic lenses (Liu and Schreiner type) capable of focusing particles with diameters ranging from 80 nm to 800 nm and 300 nm to 3000 nm, respectively. By using the pressure regulated Schreiner lens, the instrument is independent of variations in atmospheric pressure which would lead to changing dynamical properties of the aerosol particles. Active pressure control inside the inlet system facilitates airborne measurements without complicated corrections. With the Liu setup no pressure regulation was used. Here the overall efficiency of our instrument was 7% while with the Schreiner setup 2% was achieved. The Liu lens setup is optimal for measuring submicron particles at low particle concentrations. To detect supermicron particles the Schreiner lens setup is favored. Together with these experiments we present key details of the SPLAT setup and its characterization. Our instrument is able to measure simultaneously the size and the chemical composition of individual aerosol particles larger than 300 nm in diameter. It uses forward scattered light of single aerosol particles at two positions to determine their vacuum aerodynamic diameter from the flight time between the two lasers. Chemical analysis of the particles is done by laser ablation mass spectrometry utilizing a bipolar time-of-flight mass spectrometer.  相似文献   

15.
ABSTRACT

A new family of mesoporous silica, KCC-1 or bcl silica, demonstrates the open channel pore due to its bicontinuous concentric lamellar (bcl) morphology. KCC-1 can enhance mass transport by its unique and hierarchical pore structures. A study on the diatomic molecule nanofluidic behavior can be a reference to understanding the transport kinetics in KCC-1. In this study, we report a comparison with MCM-41 and Silica Gel 60. At the earliest time, the adsorption process on KCC-1 provides effective mass transport kinetics among others. Thus, KCC-1 offers better performance for applications as host or support in the catalysis process.  相似文献   

16.
Abstract

This paper investigated the thermal fragmentation of three lignite samples with temperature of 100?°C–200?°C and drying time of 0–90?min using the fixed bed reactor. The effects of a variety of factors such as temperature and drying time on fragmentation ratio were studied. The results showed that fragmentation ratio was positively related to temperature and drying time, and the degree of fragmentation was different for different lignite samples. Additionally, it was demonstrated that the point load strength remarkably decreased with the increase of temperature and drying time. The fragmentation ratio as a function of point load strength represented that lignite with higher strength had a lower fragmentation ratio, and the possibility of secondary fragmentation of dried lignite decreased with the increase of point load strength. Fragmentation ratio decreased with the increase of lignite density. The mineral matters of lignite significantly had influence on fragmentation. The mass inhomogeneity degree was given to depict the mineral element compositions. A fragmentation prediction equation was established based on mass inhomogeneity degree, which was associated with moisture content and ash content.  相似文献   

17.
The Aerodyne aerosol mass spectrometer (AMS) employs flash vaporization (600°C) followed by 70-eV electron impact ionization (EI) to detect organic and inorganic aerosols. The signal at mass-to-charge ratio (m/z) 44 (mainly CO 2 + ) is considered the most reliable marker of oxygenated organic aerosol. This study is the first to evaluate the contribution of selected low molecular weight dicarboxylic acids (diacids) and ω-oxocarboxylic acids (ω-oxoacids) to the particle-phase m/z 44 signal of the AMS mass spectrum. Ambient measurements were conducted at a surface site in Tokyo (35°39 N, 139°40 E) during August 3–8, 2003. Diacids and ω-oxoacids were measured using a filter sampling followed by extraction, derivation, and gas chromatograph-flame ionization detector (GC-FID) analysis. The mass concentrations of diacids and ω-oxoacids show tight correlation with the m/z 44 signal (r 2 = 0.85–0.94) during the measurement period. Laboratory experiments were also performed to determine the fragment patterns of selected diacids (C2–C6 diacids and phthalic acids) and ω-oxoacid (glyoxylic acid) in ambient aerosols. Here, we report for the first time that the selected organic acids could account for 14 ± 5% of the observed m/z 44 signal on average during the measurement period. Oxalic acid (C2) is the largest contributor, accounting for 10 ± 4% of the observed m/z 44 signal. These results would be useful for interpreting the m/z 44 signals obtained from ambient measurements in various locations.  相似文献   

18.
ABSTRACT

A study of simultaneous heat and mass transfer during drying an infinite cylinder shape material (twigs of ilex paraguayenais saint hilaire) was carried out. The finite-difference method was used to solve the drying model and a simultaneous heat and mass balance in each node was made. Models with different assumptions were tested and the external mass transfer coefficient was used as a parameter to fit the model to experimental data. The thickness of the node and the time step were selected considering the system stability.

Drying temperature, twig diameter and air velocity were selected as study variables. The models results were in good agreement with experimental measurements giving mass coefficient values between 1.97 10?4and 9.55 10?4 Kg/m2 s.  相似文献   

19.
IntroductionIncreased fat mass is becoming more prevalent in women and its accumulation in the abdominal region can lead to numerous health risks such as diabetes mellitus. The clay body wrap using compounds such as green clay, green tea and magnesium sulfate, in addition to microcurrent, may reduce abdominal fat mass and minimize or prevent numerous health problems.ObjectiveThis study aims at measuring the influence of the clay body wrap with microcurrent and aerobic exercise on abdominal fat.MethodsNineteen female patients, randomized into intervention (n = 10) and control (n = 9) groups, were evaluated using ultrasound for visceral and subcutaneous abdominal fat, calipers and abdominal region perimeter for subcutaneous fat and bioimpedance for weight, fat mass percentage and muscular mass. During 10 sessions (5 weeks, twice a week) both groups performed aerobic exercise in a cycloergometer and a clay body wrap with microcurrent was applied to the intervention group.ResultsWhen comparing both groups after 5 weeks of protocol, there was a significant decrease in the subcutaneous fat around left anterior superior iliac spine in the intervention group (ρ = 0.026 for a confidence interval 95%). When comparing initial and final abdominal fat in the intervention group, measured by ultrasound (subcutaneous and visceral fat) and by skinfold (subcutaneous fat), we detected a significant abdominal fat reduction.ConclusionThis study demonstrated that the clay body wrap used with microcurrent and aerobic exercise can have a positive effect on central fat reduction.  相似文献   

20.
《分离科学与技术》2012,47(11-12):1995-2005
Abstract

To investigate the effect of the time length of pressure changing steps theoretically, mathematical expressions for the gas-phase concentration of pressure changing steps in the pressure swing adsorption process were derived under the simple initial conditions and compared with numerical solutions using the orthogonal collocation method. At this time, the linear driving force model was used. We examined whether the time length of the pressure changing steps influenced the concentration in the gas phase for various mass transfer coefficients. The time length did not affect the concentration in the gas phase for the two extreme cases, i.e., a very large mass transfer coefficient or a very small mass transfer coefficient, but the effect of time length was large for a small mass transfer coefficient. A detailed discussion of the pressure-changing steps is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号