首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(1):28-34
Submerged hollow fiber membrane system is widely used in water and wastewater treatment plants. One of the major problems of the microfiltration/ultrafiltration (MF/UF) process is membrane fouling. Few techniques have been developed to reduce membrane fouling and increase critical flux of the filtration process. In this study, membrane vibration was applied to improve the critical flux in a submerged hollow fiber MF system. A bench scale unit was especially built for this purpose and different vibrating speed was tested. The effect of the feed concentration and vibrating speed on the critical flux measurement were investigated. The critical flux was measured at different vibrating speeds varied from 0–500 oscillation per minute (opm) (5.83 Hz). The lowest critical flux was 15 L·m?2·h?1 when no membrane vibration was used and then increased gradually from 27 to 56 L·m?2·h?1 when the vibrating speed increased from 100 to 500 opm (8.35 Hz). A sharp drop in the critical flux was noticed when the concentration of feed suspension doubled from 5 g/L to 10 g/L. However, the increase in the critical flux was insignificant at higher feed concentration even when a high membrane vibrating speed was applied. This signifies that there is a limit for flux improvement in a vibratory system which is strongly dependent on the feed concentration.  相似文献   

2.
The continuous production of ethanol from carob pod extract by immobilized Saccharomyces cerevisiae in a packed-bed reactor has been investigated. At a substrate concentration of 150 g dm?3, maximum ethanol productivity of 16 g dm?3 h?1 was obtained at D = 0·4 h?1 with 62·3% of theoretical yield and 83·6% sugars′ utilization. At a dilution rate of 0·1 h?1, optimal ethanol productivity was achieved in the pH range 3·5–5·5, temperature range 30–35·C and initial sugar concentration of 200 g dm?3. Maximum ethanol productivity of 24·5 g dm?3 h?1 was obtained at D = 0·5 h?1 with 58·8% of theoretical yield and 85% sugars′ utilization when non-sterilized carob pod extract containing 200 g dm?3 total sugars was used as feed material. The bioreactor system was operated at a constant dilution rate of 0·5 h?1 for 30 days without loss of the original immobilized yeast activity. In this case, the average ethanol productivity, ethanol yield (% of theoretical) and sugars′ utilization were 25 g dm?3 h?1, 58·8% and 85·5%, respectively.  相似文献   

3.
This study was conducted to determine the optimal processing conditions for manufacturing instant sugar. The instant sugar was produced with a batch fluid bed agglomerator under the following conditions: inlet air temperature 60–90°C; water flow rate 1–3 mL min?1; and spraying time 1–10 min. The optimal conditions were estimated using response surface methodology as follows: inlet air temperature of 74.4°C, water flow rate of 2.85 mL min?1, and spraying time of 10 min. Subsequently, particle density of 1,550 kg m?3, poured density of 470.13 kg m?3, tapped density of 599.8 kg m?3, porosity of 62.1%, mean diameter of 324.66 µm, flowing time of 6.39 s, yield percentage of 78.96%, and desirability of 0.46 were obtained as optimal amounts. The results showed that the quadratic effects of water flow rate and spraying time on flowing time and particle density as well as the effects of spraying time and inlet air temperature on mean diameter and flowing time were significant. Within the temperature range of 60–90°C, the impact of spraying time and water flow rate on instant sugar properties had preference over inlet air temperature. Moreover, the optimal instant sugar required less dissolution time compare to various industrial sugar samples.  相似文献   

4.
《分离科学与技术》2012,47(12):1768-1776
The fructan separation from a model sugar solution and natural agave juice was studied using a stirred-cell nanofiltration unit operated in concentration mode. Hydrophilic cellulose membrane with MWCO of 1000 Da was used. The experimental conditions were varied to predict the influence of pressure (0.14–0.350 MPa) and feed concentration (0.15–0.25 g/mL) on the initial permeate flux and solute retained fraction (SRF) values of the process. Response surface plots (p < 0.05) showed that the permeate flux and SRF increased significantly with the pressure and decreased with feed concentration. The permeate flux varied from 0.5 to 4.1 L · h?1 · m?2. The fructan retained fraction in model sugar solution varied from 0.85 to 0.97 whereas fructose, glucose and sucrose presented similar SRF values ranging from 0.38 to 0.65. Promising results were obtained when natural agave juice was used.  相似文献   

5.
We present a simple approach for preparing mesoporous carbon membranes on macroporous fly-ash-based ceramic supports via sol-gel polymerization of resorcinol with formaldehyde. The support was dip-coated and dried at 45°C under ambient pressure without a special drying process. The mesoporous carbon membrane was obtained after carbonization under a nitrogen atmosphere. The coating–pyrolysis process only required one cycle. The graphitization degree increased with carbonization temperature, as shown by X-ray diffraction. However, Raman spectroscopy revealed that defects emerged at high carbonization temperature. Scanning electron microscopy clearly showed the mesoporous carbon layer and macroporous support, a uniform carbon layer with thickness less than 1 µm forming on the support. The obtained carbon membrane shows uniform pores and high mesopore volume. The flux of pure water through the mesoporous carbon membrane was as high as 167 L · m?2 · h?1 · bar?1. The molecular weight cutoff of this membrane was found to be about 20,000 Da.  相似文献   

6.
Response surface methodology (RSM) was applied to study the effects of types of wall materials (modified starch + maltodextrin and whey protein concentrate + maltodextrin), feed concentration, oil concentration, and outlet air temperature on oil retention and surface oil content of the encapsulated powder. The results revealed that the oil retention was significantly (P < 0.05) affected by the constant term of types of wall materials and the linear term of feed concentration but seemed to be almost independent (P > 0.05) of experimental range of oil concentration and outlet air temperature. The types of wall materials, oil load, and outlet air temperature showed a significant (P < 0.05) influence on surface oil content. The types of wall materials (Hi-Cap and WPC) also influenced significantly the oil retention and surface oil content. Based on the limited range of experimental conditions used in this work, it was not possible to choose the wall materials that can give both high oil retention and low surface oil content. Disregarding the effect of wall material, an optimum response was obtained at 40% of feed concentration (w/w), 18% of oil concentration, and 65°C of outlet air temperature.  相似文献   

7.
Industrial production of lactose hydrolyzed milk powder (LHMP) remains challenging. Due to the presence of the monosaccharides glucose and galactose, lactose-free powders tend to suffer stickiness, caking, and browning during drying and storage. We sought to find ideal conditions spray dryer inlet air temperature (θair,in) and concentrated milk flow rate (mCM) for LHMP production. We tested θair,in settings of 115–160°C and mCM of 0.3–1.5?kg?·?h?1, and also applied mass and energetic balances. LHMP generally exhibited higher mass and energetic losses than the control (milk powder containing lactose), as a consequence of the relatively low dryability of LHMP. For a lab scale spray dryer, the ideal conditions settings for LHMP production were θair,in?=?145?±?2°C and mCM?=?1.0?kg?·?h?1, taking into account the mass yield and energetic cost (kJ?·?kg?1 of powder) of the process. These ideal conditions are a potential tool for the industrial development of lactose-free dairy powders.  相似文献   

8.
The transient behaviour of an adiabatic fixed-bed catalytic reactor has been studied experimentally as well as theoretically using the hydrogenation of small amounts of CO and CO2 to methane as the test reactions. The axial temperature profile in a 0·5-litre reactor containing a Ni/Al2O3 catalyst was measured as a function of time after applying changes of the carbon oxide concentration in the feed and of the feed temperature. Besides, a quasi-homogeneous model was developed to simulate the transient behaviour of the reactor; its partial differential equations were solved numerically using the Crank-Nicholson algorithm.The agreement between measured and calculated reactor responses was quite good at carbon oxide concentrations up to 2·2 vol %, an inlet temperatures below 250°C and in the space velocity range of 5000–25000 h?1, under which conditions the reaction is so slow that mass and heat transfer limitations do not occur.  相似文献   

9.
During the industrial processing of pomegranate, large volumes of industrial wastes (seeds, peels, leaves) are produced, which have a wide range of nutritional values. In this work, a new method for pomegranate seed application in food industries was developed based on the extraction of seed oil and its subsequent encapsulation by spray drying. Skimmed milk powder was used as encapsulating agent. Ratio of core to wall material, feed solids concentration, inlet air temperature, and drying air flow rate were the factors investigated with respect to encapsulation efficiency using a central composite design. The resulting microcapsules were evaluated in terms of moisture content, particle size, bulk density, and hygroscopicity. The optimum operating conditions were found to be: ratio of core to wall material, 1/9; feed solids concentration, 30% (w/w); inlet air temperature, 187 °C; drying air flow rate, 22.80 m3/h. Under these conditions, the maximum encapsulation efficiency was about 95.6%.  相似文献   

10.
The effects of four operating parameters involved in the spray-drying process, including air inlet temperature (120–150°C), air flow rate (3.5–5.0 m3/h), feed flow rate (2–10 mL/min), and aspirator rate (50–70 m3/h), to produce black raspberry juice powders with the highest retention rate of healthy functional components were optimized using a response surface design. Second-order polynomial models with high R 2 (0.955–0.972) values were developed using multiple linear regression analysis. Results showed that the most significant (p < 0.05) process conditions that affected the antioxidant activity and cyanidin-3-O-glucoside content (C3GLU) of powders respectively were the quadratic effects of air inlet temperature and air flow rate and quadratic terms of air and feed flow rates. Laser diffraction particle size analysis and scanning electron microscopy were used to relate the microstructure and quality features. The lowest EC50 (0.0060 mL juice/g 1,1-diphenyl-2-picrylhydrazyl [DPPH]) and the highest C3GLU (4.721 mg/100 mL) values were achieved at an inlet temperature of 120.0°C, air flow rate of 4.20 m3/h, feed flow rate of 8.65 mL/min, and aspirator rate of 55.87 m3/h.  相似文献   

11.
The objective of this study was to evaluate the influence of process conditions on the properties of ginger essential oil microencapsulated by spray drying, using whey protein isolate and inulin as encapsulating agents. The treatment with 30% addition in wall material resulted in the largest droplet size in the emulsion. The wettability, encapsulation efficiency, particle size, and polydispersity index were significantly affected by the two analyzed factors. Through the optimization process, the results indicate that moderate wall material concentrations (22.34%) and high inlet air temperature (170°C) were the best conditions for the ginger essential oil spray drying process.  相似文献   

12.
《Drying Technology》2013,31(3):569-586
ABSTRACT

In this work we suggest the dynamic modeling of a spray dryer considered as a series of well-stirred dryers. That is, a series of dryers in which the output variables are equal to the state variables. The state equations were obtained from the heat and water mass balances in product and air. Additionally, heat and water mass balances in interface jointly with water equilibrium relation between product and air were considered. A pilot spray dryer was modeled assuming one, two, five and 20 well stirred steps. Low-fat milk with 10–20% of solids was dried at different inlet air temperatures (120–160°C), air flow rate of 0.19 kg dry air s?1 and different feed rates (1.4 ? 4.2 × 10?4 kg dry solids s?1). Stationary result showed that the model predicts the experimental air outlet temperature, at different inlet conditions with a maximum deviation of 6°C. The dynamic simulation reproduce the experimental one with moderate accuracy. Experimental dynamic showed that the pilot plant spray dryer has a well-stirred process behavior. The model represents a method for estimate outlet product moisture as function of the outlet air temperature. This has application for automatic control because there is not an easy way to measure on-line measure the outlet product moisture content.  相似文献   

13.
《分离科学与技术》2012,47(3):420-427
In this article, the composite polydimethylsiloxane (PDMS) membranes supported by cellulose-acetate (CA) microfiltration membrane were successfully prepared by adding nano-fumed silica particles modified with a silane coupling reagent, NH2-C3H6-Si(OC2H5)3. The effects of silica content, feed concentration, and feed temperature on the pervaporation performances of the nano-composite PDMS membranes were investigated for recovering ethanol from aqueous solution by pervaporation. It was found that adding the modified silica particles significantly improved the pervaporation performances of the composite membranes. When the silica content in the membrane was 5 wt%, for a 5 wt% ethanol/water mixture at 40°C, the permeation flux of the membrane maintained about 200 g · m?2 · h?1 and separation factor reached the maximum value of 19.  相似文献   

14.
A novel nanofiltration (NF) membrane was prepared with cyclen and trimesoyl chloride by interfacial polymerization on a poly(ether sulfone) ultrafiltration membrane with a molecular weight cutoff of 50,000 Da. The effects of the reaction time, monomer concentration, and heat‐treatment temperature are discussed. The physicochemical properties and morphology of the prepared NF membrane were characterized by Fourier transform infrared spectroscopy–attenuated total reflectance, scanning electron microscopy, energy‐dispersive spectrometry, and atomic force microscopy. The NF performances were evaluated with solutions of Na2SO4, MgSO4, Mg(NO3)2, and NaCl. The salt‐rejection order of the prepared NF membrane was as follows: Na2SO4 > MgSO4 > Mg(NO3)2 > NaCl. The resulting rejection of Na2SO4 and PEG600 (polyethylene glycol with the average molecular weight of 600) were more than 90%, whereas that of NaCl was approximately 10%. After the addition of silica sol in the aqueous phase (silica sol concentration = 0.1% w/v), the salt rejection of the membrane changed slightly. However, the water flux was from 24.2 L·m?2·h?1 (25°C, 0.6 MPa) up to 38.9 L·m?2·h?1 (25°C, 0.6 MPa), and the resulting membrane exhibited excellent hydrophilicity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42345.  相似文献   

15.
Abstract

Enzyme-assisted aqueous extraction processing (EAEP) is an environmentally friendly technology that simultaneously extracts both oil and protein. It has shown to be commercial feasibility for high oil recovery (~97%) and favorable protein functionality properties. The present study used soy skim, the liquid co-products obtained using EAEP to produce a polypeptide-rich spray-dried powder. The effects of inlet drying air temperature (140?°C, 160?°C, 180?°C and 200?°C), feed flow rate (3, 6, 9, and 12?mL/min), and solids concentration (25%, 30%, 35%, and 40%) on the properties of the polypeptide-rich powders were investigated. Water activity (aw), color characteristics, bulk density, Carl Index (CI), Water Solubility Index (WSI), micro-morphology, peptide distribution, and antioxidant capacity were significantly affected by different spray-drying parameters. The results of antioxidant capacity test showed that the spray drying conditions significantly affected the antioxidant capacity of the polypeptide-rich powders. The polypeptide molecular weight size and distribution, the composition of the peptide chain, and the cross-linking with other substances could all affect its antioxidant capacity. Overall, good quality polypeptide-rich powders in terms of physicochemical characteristics, micro-morphology, and functional properties can be produced by spray-drying at an inlet temperature of 160?°C, a feed flow rate of 6?mL/min, and solids concentration of 35%.  相似文献   

16.
Ethanol production by immobilised yeast cells in packed-bed column reactors was significantly affected by the hold-up of CO2 produced during the fermentation. Compartmentalisation of the reactor minimises CO2 hold-up and prevents flotation of immobilised cell beads during operation and bead rupture during shut-down conditions. In a reactor of dimensions 2·2 × 60 cm, a rate of ethanol production of 5·11 g h?1 at a dilution rate of 1·27 h?1 was achieved, when 18% (w/v) glucose solution was fed at the bottom at pH 5·5 and temperature 33–35°C. In larger reactors of sizes 4 ×; 40 cm and 8 × 80 cm the rates of ethanol production and CO2 hold-ups were 5·11 and 5·37 g h?1 and 48·66% and 40·66% and 40·79% of the void volume at dilution rates of 1·27 h?1 and 1·67 h1, respectively. The CO2 hold-ups in column reactors (4 × 40 cm) held in inclined (43° from horizontal) or horizontal positions were 41·33% and 46·67% of the void volume, respectively. Double and triple series reactors (each of dimensions 2·2 × 60 cm) showed better performance than a single verticle reactor (2·2 × 60 cm).  相似文献   

17.
The influence of spray-drying conditions on some physicochemical properties of palm-sugar powder ( Arenga pinnata ) was studied. Twenty tests were carried out according to a central composite design. Independent variables were: inlet temperature (150–190°C), feed flow rate (9–21 g/min), and maltodextrin concentration (14–25%). Process yield, hygroscopicity, and outlet temperature were analyzed as responses. Results revealed that increasing inlet temperature resulted in higher process yield and outlet temperature and a lower hygroscopicity. Similarly, higher inlet temperature led to lower moisture content, dissolution rate, and total phenolic content of the powder. Conversely, the feed flow rate negatively influenced process yield and hygroscopicity, and positively influenced moisture content. Moreover, maltodextrin exhibited negative influence on process yield and hygroscopicity, respectively. Moreover, storage (30°C, six months) led to noticeable losses in flowability and wettability. Powder morphology was also influenced by the inlet temperature. Lower inlet temperature resulted in particles with shrivelled surfaces while higher temperature produced a greater number of larger particles with smooth surfaces.  相似文献   

18.
A commercial zeolite desiccant wheel is tested with atmospheric pressure superheated steam regeneration over a range of air inlet conditions, steam inlet temperatures, and wheel rotation speeds. Results are compared with those from high-temperature air regeneration experiments on the same wheel obtained from the literature. For both cases the air stream to be dried was relatively hot and moist with inlet temperature and absolute humidity values of 50°C and 25 g · kg?1 chosen to reduce heat carryover. Using steam at 160°C to regenerate the wheel leads to the same dehumidification as using hot air at approximately 90°C. The benefit of superheated steam drying is that a nearly closed-loop regeneration process can be used with potential energy savings on the order of 30%.  相似文献   

19.
Simultaneous production of hydrogen as an energy carrier and chlorine as a valuable chemical from recycled hydrogen chloride was investigated employing a lab-scale membrane electrolysis setup. The effects of various process parameters including current density (1–4 kA m?2), cell temperature (45°–75°C), flow rate of hydrochloric acid feed (200–500 mL min?1), and concentration of acid (18–21 wt.%) on the cell voltage and chlorine current efficiency (ChCE) were studied. The Taguchi design of experiments (L16 array) was employed to design the minimum number of experiments necessary to fully study the process. A filter press type cell of 10 cm2 surface area comprising a DSA anode, an alloy of predominantly nickel cathode and Nafion 115 membrane, was used. It was observed that increasing anolyte flow rate, anolyte concentration, or cell temperature caused a decrease in cell voltage and an increase in ChCE, while increasing current density linearly increased cell voltage and decreased ChCE.  相似文献   

20.
Enzymatic extraction of oil from Kalahari melon seeds was investigated and evaluated by response surface methodology (RSM). Two commercial protease enzyme products were used separately: Neutrase® 0.8 L and Flavourzyme® 1000 L from Novozymes (Bagsvaerd, Denmark). RSM was applied to model and optimize the reaction conditions namely concentration of enzyme (20–50 g kg?1 of seed mass), initial pH of mixture (pH 5–9), incubation temperature (40–60 °C), and incubation time (12–36 h). Well fitting models were successfully established for both enzymes: Neutrase 0.8 L (R 2 = 0.9410) and Flavourzyme 1000 L (R 2 = 0.9574) through multiple linear regressions with backward elimination. Incubation time was the most significant reaction factor on oil yield for both enzymes. The optimal conditions for Neutrase 0.8 L were: an enzyme concentration of 25 g kg?1, an initial pH of 7, a temperature at 58 °C and an incubation time of 31 h with constant shaking at 100 rpm. Centrifuging the mixture at 8,000g for 20 min separated the oil with a recovery of 68.58 ± 3.39%. The optimal conditions for Flavourzyme 1000 L were enzyme concentration of 21 g kg?1, initial pH of 6, temperature at 50 °C and incubation time of 36 h. These optimum conditions yielded a 71.55 ± 1.28% oil recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号