首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
煤层气损失气含量及其影响因素分析   总被引:1,自引:0,他引:1  
为验证现行煤层气损失气含量估算结果的准确性,选取铜川地区1~3 mm,30~50 mm,φ89 mm柱样和柳林地区30~50 mm粒级的煤样进行了煤层气损失气含量模拟试验,模拟绳索取芯,包括钻孔提芯、地面暴露和解吸罐中3个阶段的全过程,实测了煤层气损失量和解吸量,并与美国矿业局直接法作了对比分析。试验结果表明:实测的煤层气损失气含量为采用美国矿业局直接法估算值的2.79~16.49倍,且煤的粒级和煤阶对煤层气损失量有着显著影响;同等条件下,对于铜川三种粒级煤样1~3 mm,30~50 mm和柱样,其损失率(损失量占总含气量的比例)分别为75%,49%和26%;相同粒级,低变质铜川1-2煤的损失气量为中变质柳林1-2煤的1.67倍,且粒级的影响显著于煤阶的影响。  相似文献   

2.
孙健  魏强  晏波  肖贤明 《煤炭学报》2018,43(10):2848-2856
解吸法是测试煤层含气量、评价煤层气地球化学特征的常用方法,但由于存在一定数量的损失气,使得对煤层气的全解吸过程了解甚少,也难以评估损失气拟合计算的可靠性。利用自主研发的煤层气/页岩气生成与解吸实验装置,对一块煤岩样品(Ro=0. 84%)进行了模拟(模拟后样品Ro=1. 80%),精确测定了在设定条件下的损失气、解吸气与残留气的数量、成分与甲烷碳同位素,对比研究了USBM直线法和多项式回归法对损失气拟合计算的制约条件与可靠性,探讨了煤层气解吸过程中成分与甲烷碳同位素分馏的机理。结果表明:损失时间是影响损失气量估算结果可靠性的关键,当损失时间较短(0. 25 h),USBM直线法与多项式法估算的均损失气量较接近真实值;相比之下,多项式法的结果更为可靠。样品气体解吸过程存在成分与甲烷碳同位素分馏,表现为:气体干燥系数(C_1/C_(1-3))总体降低,甲烷碳同位素(δ~(13)C_1)逐渐变重。样品广泛发育纳米孔隙结构,在气体解吸过程中存在的解吸-扩散-运移分馏是导致气体组分和甲烷碳同位素分馏的重要原因。  相似文献   

3.
为了探究水分含量和负压对煤层气等温吸附、解吸特征的影响,采用大样量煤层气吸附/解吸仿真试验设备对鄂尔多斯盆地东缘北部煤矿煤样进行煤层气常规等温吸附解吸过程和负压解吸过程的实验室模拟,通过将煤样进行处理得到干燥煤样、平衡水煤样、饱和水煤样3种不同含水饱和度煤样,分别对其进行等温吸附测试、常规等温解吸测试和负压解吸测试,得到了煤样在不同含水饱和度、不同负压条件下的压力与吸附量实测数据,并采用不同的吸附/解吸方程式进行拟合。通过对比分析,研究了水分对等温吸附过程、解吸过程以及负压对解吸过程的影响,并从分子间作用力的角度解释了水分对等温吸附解吸过程的影响。结果表明:煤样解吸过程与吸附过程不可逆,存在解吸滞后;由于水分子与煤分子间的作用力大于甲烷分子与煤分子间的作用力,水分在与甲烷的竞争吸附中具有优势,煤样含水率越高,其吸附甲烷的能力越低;煤样含水率较低时,含水对煤岩降压解吸影响不明显;当煤样含水率高于某一值时,外来水分抑制煤层气降压解吸,分析认为这可能与煤样的物质组成和煤分子结构有关;由于水分对甲烷的置换解吸作用,若水力压裂过程中压裂液滤失严重,将降低煤层吸附气量,延长排水降压阶段,减少累计产气量,因此应严格控制压裂液滤失;负压解吸阶段,单位压降引起的解吸量更大,说明负压排采增产措施具有潜力。  相似文献   

4.
武杰 《中州煤炭》2018,(2):71-75
通过不同粒径组合煤样的吸附和解吸实验,模拟测定不同破碎特性煤的原始含气量和国标法实测含气量,并研究了不同破碎特性煤体含气量的测定方法。研究结果表明,不同破碎程度煤的原始含气量和国标方法测定的含气量差别很大,对于煤体破碎的煤,采用国标方法测得的含气量与实际值偏差较大。分析认为这种偏差主要是由于损失气含量的估算偏差造成,在整个取心过程中,破碎程度大的煤解吸速率变化很大,以致估算方法不适用,而且用估算曲线上的趋于平缓段估算急剧上升段,造成估算结果偏小。煤样损失气含量与煤体破碎程度具有明显相关性,随着煤体破碎程度的增加,煤样的实际损失气含量呈现逐渐增大的趋势。基于此,建立了损失气含量估算值和损失气含量实际值的两段式拟合关系式,从而对国标方法估算损失气含量的偏差进行了修正。该研究对煤矿安全生产和煤层气勘探开发具有重要的实际意义。  相似文献   

5.
一、解吸法损失瓦斯量原计算方法及缺陷 目前,在煤田地质勘探工作中,普遍采用解吸法来测定煤芯中的瓦斯含量。解吸法的关键,是以在地面解吸得出的瓦斯释放规律来推算煤芯在解吸前暴露时间内的损失瓦斯量。 煤芯在提升过程中,当瓦斯气压大于孔内静水压力时开始释放瓦斯。但是,瓦斯压力是个未知数,无从知道何时开始释放瓦斯。因而假定:煤芯提升到孔口时间的一半(t_1/2)作为煤样在孔内暴露时间。即认为从这个时刻开始,煤芯释放瓦斯等同于在地面的解吸状态。 煤样解吸前暴露时间包括孔内暴露时间(t_1/2)和装入密封罐时间(t_2),令θ=(t_1+t_2)/2。解吸时间为t_3。目前仍然承认并使用上述假定。  相似文献   

6.
煤层注热可以提高瓦斯解吸率和煤层渗透率,是低渗透煤层瓦斯开采的有效方法。为确定该方法实施中合理的注热温度,利用600℃20 MN伺服控制高温高压岩体三轴试验机,模拟研究了处于500 m原岩应力状态下,大尺寸无烟煤、气煤(Φ200 mm×L400 mm)在20~600℃的热解产气及甲烷生成特征。无烟煤和气煤热解产气量均呈现明显的阶段性。无烟煤在200℃之前无气体析出,400~450℃和550~600℃为产气量峰值段,其余温度产气量较少;气煤在130℃开始有气体析出,250~300,450~500,550~600℃这3个温度段内热解产气量较大,是产气的峰值温度段。2种煤样在温度低于300~350℃热解产气速率较低,高于该温度后,产气速率迅速增大。煤阶是影响二者产气特征差异性的主要原因。低于200~250℃时,热解气体中的甲烷主要来源于原始煤体中吸附态甲烷,350℃后析出的甲烷主要来源于煤体本身的解聚和分解。结合试验煤种渗透率和热变形随温度变化特征,确定低渗透煤层注热开采瓦斯合理的注热温度为250~300℃。  相似文献   

7.
为研究2种变质程度不同的无烟煤样对不同吸附质的吸附解吸情况,选取白芨沟煤矿和阳煤五矿2种变质程度不同的无烟煤样对二氧化碳和甲烷气体进行吸附解吸实验,采用恒容和恒压2种实验方法,测试了在不同压力点下,2种煤样吸附二氧化碳和甲烷的吸附量,以及在连续阶梯压力点下吸附解吸的特征,分别与Langmuir模型和本课题组提出的"■"式进行拟合,Q为吸附量,t为解吸时间。实验结果表明:进行恒压吸附时,2种煤样对二氧化碳的吸附量总是大于对甲烷的吸附量;进行阶梯压力实验时,2种煤样对二氧化碳和甲烷的吸附规律与Langmuir模型的拟合效果很好,解吸规律与"■"模型的拟合情况很好;二氧化碳吸附速率大于甲烷吸附速率。  相似文献   

8.
以不同煤体结构低煤阶煤样为例,采用低温N2吸附和冰点CO2气体吸附试验,分析了煤储层的纳米级孔隙结构特征;结合现场解吸试验,分析了不同煤体结构煤储层的含气量和解吸速率;从煤储层纳米级孔隙结构层面分析了不同煤体结构煤的吸附解吸控制机理。结果表明:碎粒结构煤的超微孔较原生结构煤发育,碎粒结构煤的自然解吸时间显著短于原生结构煤;常压下甲烷气体吸附在墨水瓶形等复杂超微孔内难以解吸,当通过高温和粉碎煤样后超微孔内的吸附气解吸,呈现出残余气碎粒结构煤大于原生结构煤。  相似文献   

9.
晋城地区煤层甲烷碳同位素特征及成因探讨   总被引:3,自引:0,他引:3  
段利江  唐书恒  刘洪林  李贵中  王勃 《煤炭学报》2007,32(11):1142-1146
对取自沁水盆地南部晋城地区的煤芯样中的解吸气进行了甲烷碳同位素测定.结果表明,随着解吸过程的进行,δ13C1值逐渐变重,δ13C1值和解吸时间呈对数关系,δ13C1值变重趋势具有先快后慢的阶段性特点.取样条件和取样时间对煤层甲烷碳同位素值有较大影响,在某一个时间点所取气样的同位素值不一定代表该井原地气体的同位素值.在采样进行同位素测定时,煤样全部解吸气体的碳同位素的平均值才能代表该井煤层气的原地气同位素值.在实际操作中,可以用罐装煤样气体解吸半量时间点所取气样的同位素值来代表全部解吸气体的同位素平均值.与煤岩热模拟实验所得到的经验公式计算结果比较,晋城地区实测的煤层甲烷碳同位素值偏轻.晋城地区煤层甲烷碳同位素的组成特点受解吸-扩散-运移过程中发生的分馏效应以及其他多种因素的共同制约.  相似文献   

10.
探讨微生物高效降解甲烷的外部环境和有利条件,是进一步优化形成通过生物学方法治理煤层瓦斯灾害的基础工作。采用自制高压甲烷和氧气混合装置调节混合气体的压力和氧气浓度,并在充分混合后与吸附罐连通,观察测试罐中煤样对甲烷的吸附变化特征。通过向预先装入吸附罐中的多组干燥煤样喷洒不同浓度甲烷氧化菌液,重点就高压、低氧混合气体供给条件下甲烷氧化细菌对煤样的甲烷吸附(解吸)量影响及二氧化碳气体生成量变化进行了比较深入、细致的实验分析。实验结果表明:高压稀氧条件下甲烷氧化细菌仍能进行呼吸作用;增大混合气体压力、提高混合气体中的氧气浓度、增加甲烷氧化菌液浓度均有利于降解反应的进行。  相似文献   

11.
《煤炭技术》2017,(1):91-94
通过对新疆阜康矿区FK01井钻井取芯煤样进行处理,制取成10~20目的煤粒和直径准50 mm的煤芯,用不同的酸液体系对煤粉和煤芯进行处理,测量煤粉酸化前后的溶蚀率和煤芯酸化前后的渗透率。  相似文献   

12.
刘炎杰  苏恒 《煤》2015,(4):12-14,18
为了研究粒径、水分对煤中甲烷的吸附、扩散影响,进行了甲烷等温吸附-扩散实验。选取潞安古城矿区3号煤,制成60~80目的煤样,在30℃恒定温度,相同的平衡压力条件下进行吸附扩散实验,对比分析研究甲烷在不同粒径、含水煤样中的扩散量、扩散速度的差异。通过实验发现:在相同的吸附平衡压力下,同一水分不同粒径煤样,同一时间大粒径煤中甲烷扩散量和扩散速度均小于小粒径的扩散量和扩散速度;同一粒径不同含水煤样,同一时间煤样含水量越小,瓦斯解吸量越大,水分对瓦斯解吸起着明显的抑制作用,煤样含水量越高,同一时间瓦斯解吸速度越小,随着时间的增加解吸速度逐渐缓慢。研究不同主控因素下的甲烷扩散规律,对煤层气开发和矿井瓦斯灾害防治有很好的指导意义。  相似文献   

13.
针对直接解吸法测定煤层瓦斯含量过程中难以精准推算瓦斯损失量的难题,采用气体吸附测定仪与解吸仪相结合的方法,试验测定了煤样暴露过程中的瓦斯损失量,对比分析了地勘补偿模型和孙重旭补偿模型的推算精度。研究发现:对于同一煤样,瓦斯损失量与煤样暴露时间及块度有关,煤样块度越大,瓦斯损失量越小,当块度大到一定程度后,瓦斯损失量增加幅度不再明显;与实测的煤层瓦斯损失量相比,孙重旭补偿模型对瓦斯损失量的补偿效果要优于地勘补偿模型,煤样暴露时间越短,瓦斯损失量的推算精度越高。当煤样块度小于等于20 mm时,其暴露时间应小于20 min;当煤样块度大于20 mm时,其暴露时间应小于30 min。  相似文献   

14.
针对直接解吸法测定煤层瓦斯含量过程中难以精准推算瓦斯损失量的难题,采用气体吸附测定仪与解吸仪相结合的方法,试验测定了煤样暴露过程中的瓦斯损失量,对比分析了地勘补偿模型和孙重旭补偿模型的推算精度。研究发现:对于同一煤样,瓦斯损失量与煤样暴露时间及块度有关,煤样块度越大,瓦斯损失量越小,当块度大到一定程度后,瓦斯损失量增加幅度不再明显;与实测的煤层瓦斯损失量相比,孙重旭补偿模型对瓦斯损失量的补偿效果要优于地勘补偿模型,煤样暴露时间越短,瓦斯损失量的推算精度越高。当煤样块度小于等于20 mm时,其暴露时间应小于20 min;当煤样块度大于20 mm时,其暴露时间应小于30 min。  相似文献   

15.
地勘解吸法煤层瓦斯含量测定是由煤样瓦斯解吸量测定、煤样残存瓦斯含量测定以及取芯过程煤样损失瓦斯量推算3个步骤构成的。针对用地勘解吸法t~(1/2)规律推算煤样瓦斯损失量存在着计算偏差问题,通过对国内多个矿区用间接法和实测的瓦斯涌出量与t~(1/2)法测定结果比较,反算煤层瓦斯含量等方法验证,得到地勘解吸法瓦斯量计算偏差随钻孔深度的变化幅度以及普遍存在测值偏低程度、随孔深增加而加大的趋势。以峰峰煤田羊渠河井田和沈阳煤田红阳井田煤层瓦斯含量地勘解吸法实测结果为例,根据地勘解吸法t~(1/2)规律推算采样过程煤样损失瓦斯量的合理性,研究了煤样瓦斯损失与埋深之间的关系,分析了造成煤样瓦斯损失量偏差的原因,为合理取样工作提供参考。  相似文献   

16.
美国矿山局匹兹堡研究中心,提出了一种可在开采前按煤芯计算煤层瓦斯含量的新方法。这种方法,分析设备简单(造价不到100美元),测定时间不超过1个月。这种测定方法是直接法的进一步发展。其实际内容是,把煤样从煤样采取器中取出时,立即放  相似文献   

17.
通过实验室煤粒瓦斯解吸测试,研究了同一种煤样在3种不同粒径条件下的煤粒瓦斯解吸规律。在对实验数据分析的基础上,结合理论推导构建了基于煤粒瓦斯解吸过程温度变化量的煤体瓦斯解吸扩散数学模型并开展了相关验证,分析了该模型的适用性。研究结果表明,3种粒径煤样在吸附平衡压力为0. 34 MPa左右时,瓦斯解吸量分别可以达到3. 77、3. 91、5. 65 mL/g,煤样解吸速率与粒径之间呈负相关关系。煤粒瓦斯解吸过程中实测煤体温度变化曲线呈"马鞍"形。建立的描述煤粒瓦斯解吸初期阶段的数学模型可用于预测特定条件下煤体瓦斯解吸温度变化量,对于研究煤矿瓦斯运移过程及灾害预警具有重要的参考价值。  相似文献   

18.
为查明暴露面积和吸附时间对瓦斯吸附的影响,以不同暴露面积型煤为研究对象,应用等温吸附试验仪,进行30min、60 min、90 min的甲烷和二氧化碳气体的等温吸附试验.结果表明:气体吸附过程中,在吸附时间和吸附压力相同条件下,随着暴露面积的增加,单位压力下吸附量增加,暴露面积越大,吸附量越大;煤样在前30 min内吸附量最大,吸附速率最快,在30~90 min时间内,吸附速率明显变慢;二氧化碳吸附速率大于甲烷的吸附速率;甲烷和二氧化碳气体低压条件下单位压力吸附量大于高压条件下的吸附量.  相似文献   

19.
阜新煤田注二氧化碳提高煤层甲烷的研究   总被引:3,自引:1,他引:2  
针对阜新煤田煤储层的地质特征,选取了刘家煤层气勘探区和东梁矿2个地点,开展了注二氧化碳置换煤层甲烷的试验模拟研究.试验结果表明,二氧化碳的吸附能高于甲烷的吸附能,它可以将甲烷从煤的微表面置换出来,从而提高煤层甲烷的采出率.在置换过程中总是吸附能力弱的甲烷首先解吸,而吸附能力强的二氧化碳最后解吸,而且较高压力下的置换效果总比低压下的好.与东梁矿煤样相比,刘家煤样具有较强的吸附能力和较高的单位压降下的解吸率,但置换效率相差不大,主要原因是二者的二氧化碳对甲烷分离因子差别较小.注气试验时应该充分考虑注入压力点和气体注入量才能保证满意的置换效果.  相似文献   

20.
为了确定通顺矿煤与瓦斯突出敏感指标Δh2和K1的相对敏感性,基于高压吸附解吸实验和钻屑指标的模拟测定,研究发现煤样瓦斯解吸量与吸附平衡压力呈现幂函数关系,通顺矿瓦斯解吸量第4~5 min比第1 min受吸附平衡压力控制作用更明显。通过对现场实测数据的分析,验证了钻屑指标△h_2比K1指标更敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号