首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Samples of a spray-cast Al-7034 alloy were processed by high-pressure torsion (HPT) at temperatures of 293 or 473 K using an imposed pressure of 4 GPa and torsional straining through five revolutions. Processing by HPT produced significant grain refinement with grain sizes of 60 and 85 nm at the edges of the disks for the two processing temperatures. In tensile testing at room temperature, the alloy processed by HPT exhibited higher strength and lower ductility than the unprocessed material. Good superplastic properties were achieved in tensile testing at elevated temperatures with a maximum elongation of 750% for the sample processed at 473 K and tested in tension at 703 K under an initial strain rate of 1.0 × 10−2 s−1. The measured superplastic elongations are lower than in samples prepared by equal-channel angular pressing because of the use of very thin disks in the HPT processing.  相似文献   

2.
Compressive and wear properties of bulk nanostructured Al2024 alloy prepared by mechanical milling and hot pressing methods were investigated. Al2024 powders were subjected to high-energy milling for 30 h to produce nanostructured alloy. As-milled powders were compacted at 500 °C under 250 MPa in a uniaxial die. Consolidated sample had an average hardness and relative density values of 207.6 HV and 98%, respectively. Uniaxial compression tests at strain rates in the range of 1.67 × 10−4–1.67 × 10−2 s−1 were performed using an Instron-type machine. The wear behavior of nanostructured sample was investigated using a pin-on-disk technique under an applied load of 20 N. The compression and wear experiments were also executed on samples of commercial coarse-grained Al2024-O (annealed) and Al2024-T6 (artificially-aged) alloys, for comparison. The structure of consolidated Al2024 was characterized by X-ray diffraction (XRD). The yield strength and compressive strength of nanostructured Al2024 reached a value of 698 MPa and 712 MPa at strain rate of 1.67 × 10−4 s−1, respectively, which was considerably higher than those for coarse-grained Al2024-O and Al2024-T6 counterparts. Worn surfaces and the wear debris were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XRD. Nanostructured Al2024 revealed a low friction coefficient of 0.3 and a wear rate of 12 × 10−3 mg/m, which are significantly lower than those obtained for Al2024-O and Al2024-T6 alloys. This enhanced wear resistance was mainly caused by nanocrystalline structure with high hardness value. The dominating wear mechanism of nanostructured Al2024 appeared to be delamination mechanism.  相似文献   

3.
The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300 °C, cooled at rates of 0.3, 1.2 and 3.0 °C s−1 to temperatures in the range 750–1050 °C, and then strained to failure at initial strain rates of 1 × 10−4 or 1 × 10−3 s−1. It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0 °C s−1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from 900 °C (near the Ae3 temperature) to 1000 or 1050 °C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility.  相似文献   

4.
A series of recently synthesized benzo- and pyridine-substituted macrocyclic diamides were studied to characterize their abilities as lead ion carriers in PVC membrane electrodes. The electrode based on 3,15,21-triaza-4,5;13,14-dibenzo-6,9,12-trioxabicycloheneicosa-1,17,19-triene-2,16-dione exhibits a Nernstian response for Pb2+ ions over a wide concentration range (1.3 × 10−2 to 3.6 × 10−6 mol L−1) with a limit of detection of 2.0 × 10−6 mol L−1 (0.4 ppm). The response time of the sensor is 16 s, and the membrane can be used for more than two months without observing any deviation. The electrode revealed comparatively good selectivities with respect to many cations including alkali earth, transition and heavy metal ions. The proposed sensor could be used in pH range of 3.7–6.5. It was used as an indicator electrode in potentiometric titration of chromate ions with a lead ion solution.  相似文献   

5.
Dynamic recrystallization during high temperature deformation of magnesium   总被引:6,自引:0,他引:6  
As a consequence of the high critical stresses required for the activation of non-basal slip systems, dynamic recrystallization plays a vital role in the deformation of magnesium, particularly at a deformation temperature of 200 °C, where a transition from brittle to ductile behavior is observed. Uniaxial compression tests were performed on an extruded commercial magnesium alloy AZ31 at different temperatures and strain rates to examine the influence of deformation conditions on the dynamic recrystallization (DRX) behavior and texture evolution. Furthermore, the role of the starting texture in the development of the final DRX grain size was investigated. The recrystallized grain size, measured at large strains (  −1.4) seemed to be more dependent on the deformation conditions than on the starting texture. In contrast to pure magnesium, AZ31 does not undergo grain growth at elevated deformation temperatures, i.e. 400 °C, even at a low strain rate of 10−4 s−1. Certain deformation conditions gave rise to a desired fully recrystallized microstructure with an average grain size of 18 μm and an almost random crystallographic texture. For samples deformed at 200 °C/10−2 s−1, optical microscopy revealed DRX inside of deformation twins, which was further investigated by EBSD.  相似文献   

6.
The syntheses of nanosize magnetite particles by wet-chemical oxidation of Fe2+ have been extensively investigated. In the present investigation the nanosize magnetite particles were synthesised without using the Fe(II) precursor. This was achieved by γ-irradiation of water-in-oil microemulsion containing only the Fe(III) precursor. The corresponding phase transformations were monitored. Microemulsions (pH  12.5) were γ-irradiated at a relatively high dose rate of 22 kGy/h. Upon 1 h of γ-irradiation the XRD pattern of the precipitate showed goethite and unidentified low-intensity peaks. Upon 6 h of γ-irradiation, reductive conditions were achieved and substoichiometric magnetite (Fe2.71O4) particles with insignificant amount of goethite particles found in the precipitate. Hydrated electrons , organic radicals and hydrogen gas as radiolytic products were responsible for the reductive dissolution of iron oxide in the microemulsion and the reduction Fe3+ → Fe2+. Upon 18 h of γ-irradiation the precipitate exhibited dual behaviour, it was a more oxidised product than the precipitate obtained after 6 h of γ-irradiation, but it contained magnetite particles in a more reduced form (Fe2.93O4). It was presumed that the reduction and oxidation processes existed as concurrent competitive processes in the microemulsion. After 18 h of γ-irradiation the pH of the medium shifted from the alkaline to the acidic range. The high dose rate of 22 kGy/h was directly responsible for this shift to the acidic range. At a slightly acidic pH a further reduction of Fe3+ → Fe2+ resulted in the formation of more stoichiometric magnetite particles, whereas the oxidation conditions in the acidic medium permitted the oxidation Fe2+ → Fe3+. The Fe3+ was much less soluble in the acidic medium and it hydrolysed and recrystallised as goethite. The γ-irradiation of the microemulsion for 25 h at a lower dose rate of 16 kGy/h produced pure substoichiometric nanosize magnetite particles of about 25 nm in size and with the stoichiometry of Fe2.83O4.  相似文献   

7.
This study was carried out to investigate the adsorption equilibrium and kinetics of a pesticide of the uracil group on powdered activated carbon (PAC). The experiments were conducted at a wide range of initial pesticide concentrations (5 μg L−1 to 500 μg L−1 at pH 7.8), corresponding to equilibrium concentrations of less than 0.1 μg L−1 for the weakest, which is compatible with the tolerance limits of drinking water. Such a very broad range of initial solute concentrations resulting powdered activated carbon (PAC) concentrations (0.1–5 mg L−1) is the main particularity of our study. The application of several monosolute equilibrium models (two, three or more parameters) has generally shown that Bromacil adsorption is probably effective on two types of sites. High reactivity sites (KL  103 L mg−1) which are 10–20 less present in a carbon surface than lower reactivity sites (KL  10 L mg−1), according to the qm values calculated by two- or three-parameter models. The maximum capacity of the studied powdered activated carbon (PAC), corresponding to monolayer adsorption, compared to the Bromacil molecule surface, would be between 170 mg g−1 and 190 mg g−1. This theoretical value is very close to the experimental qm values obtained when using linearized forms of Langmuir, Tóth and Fritz–Schluender models.  相似文献   

8.
Potentially harmful phosphate-based products derived from the wet acid digestion of phosphate rock represent one of the most serious problems facing the phosphate industry. This is particularly true for dicalcium phosphate (DCP), a food additive produced from either sulphuric acid or hydrochloric acid digestion of raw rock material. This study determined the natural occurring radionuclide concentrations of 12 DCP samples and 4 tricalcium phosphate (TCP) samples used for animal and human consumption, respectively. Metal concentrations (Al, Fe, Zn, Cd, Cr, As, Hg, Pb and Mg) were also determined. Samples were grouped into three different clusters (A, B, C) based on their radionuclide content. Whereas group A is characterized by high activities of 238U, 234U (103 Bq kg−1), 210Pb (2 × 103 Bq kg−1) and 210Po (800 Bq kg−1); group B presents high activities of 238U, 234U and 230Th (103 Bq kg−1). Group C was characterized by very low activities of all radionuclides (<50 Bq kg−1). Differences between the two groups of DCP samples for animal consumption (groups A and B) were related to the wet acid digestion method used, with group A samples produced from hydrochloric acid digestion, and group B samples produced using sulphuric acid. Group C includes more purified samples required for human consumption. High radionuclide concentrations in some DCP samples (reaching 2 × 103 and 103 Bq kg−1 of 210Pb and 210Po, respectively) may be of concern due to direct or indirect radiological exposure via ingestion. Our experimental results based on 210Pb and 210Po within poultry consumed by humans, suggest that the maximum radiological doses are 11 ± 2 μSv y−1. While these results suggest that human health risks are small, additional testing should be conducted.  相似文献   

9.
Microstructure and superplastic properties of the plates extruded from the Ca containing Mg alloy (1 wt.% Ca–AZ31) billets fabricated by electromagnetic casting (EMC) without and with electromagnetic stirring (EMS) were examined. The linear intercept grain sizes of the extruded materials were 3.7 μm and 2.1 μm, respectively. The material extruded from the EMC + EMS billet exhibited good superplasticity at low temperatures as well as at high strain rates, including the tensile elongations of 370% at 1 × 10−3 s−1, −523 K and 550% at 1 × 10−2 s−1, −673 K. These values largely exceeded those of the AZ31 alloys with the similar grain sizes. The superior superplasticity of the extruded EMC + EMS billet could be attributed to fine grains and high grain stability at elevated temperatures by the presence of finely dispersed particles of thermally stable (Al,Mg)2Ca phase. The constitutive equations were developed for describing the high-temperature deformation behavior of the fine-grained 1 wt.% Ca–AZ31 alloys with different grain sizes in wide range of temperature and strain rate.  相似文献   

10.
The dielectric constant (εr), dielectric loss (tan δ) and strain induced by electric field in lead magnesium niobate–lead titanate (PMN-PT/PMNT) solid solutions in the morphotropic phase boundary (MPB) region at different sintering temperatures have been studied. εr and tan δ increase, whereas Curie phase transition range decreases with the increase in sintering temperature. Strain levels in the range of 0.07–0.2% were obtained. A high saturated strain% 0.19, a high d33 coefficient 320 pm/V and a low strain hysteresis% 3.5 in PMNT 68/32 composition sintered at 1200 °C indicate its suitability for actuator applications.  相似文献   

11.
The present work extends a recent model for plastic deformation of polycrystalline metals based on irreversible thermodynamics. A general dislocation evolution equation is derived for a wide range of strain rates. It is found that there is a transitional strain rate (103 s−1) over which the phonon drag effects play a dominant role in dislocation generation resulting in a significant raise in the dislocation density and flow stress. The model reduces to the classical Kocks–Mecking model at low strain rates.  相似文献   

12.
The results of film deposition of pure tungsten as well as intermetallic compound of NdFeB type on various substrates using planar ECR plasma source (with multipole magnetic field) developed in our laboratory are presented. The frequency of 2.45 GHz was generated within the magnetic system by two-slot antenna. The ions of ECR argon plasma are used for target sputtering. The main plasma parameters are density 1010 cm−3, Te15 eV, ions energy 20 eV, ion current density 3.5 mA/cm2 at the ultimate magnetron power. Under sputtering of Nd8Fe86B6 target the amorphous films with high adherence and thickness of 5 μm were formed on the substrate. The deposition rate of tungsten films (target biasing 900 V) was 0.59 nm/s. The fine-grained films with high adhesion were obtained. They were tested against heat loads up to 100 J/cm2 produced under irradiation of coatings with plasma streams.  相似文献   

13.
In this paper, a carbon fiber cathode, having robust, easily shaped, and epoxy-free properties, is constructed by squeeze casting technique that can overcome some disadvantages of conventional methods. Carbon fiber emitters on the cathode surface had a high distribution density, thus ensuring sufficient emission centers or emission uniformity. The fabricated cathode was tested in a diode powered by a 350 kV, 40 Ω, 400 ns high-voltage pulse generator. The turn-on electric field was estimated to be 50 kV/cm, and the field enhancement factor was (1.2–2.0) × 103. It was found that the electron emission of carbon fiber cathode is initiated from the individual bright spots at a current density of up to 400 A/cm2. Most notably, the X-ray images of electron beam on anode foil demonstrate the development of bright spots on the cathode surface. As a whole, this class of cathodes can endure high-current pulsed emission, and has a positive application prospect.  相似文献   

14.
We generate spin-polarized carrier populations in GaAs and low temperature-grown GaAs (LT-GaAs) by circularly polarized optical beams and pull them by external electric fields to create spin-polarized currents. In the presence of the optically generated spin currents, anomalous Hall currents with an enhancement with increasing doping are observed and found to be almost steady in moderate electric fields up to 120 mV μm−1, indicating that photo-induced spin orientation of electrons is preserved in these systems. However, a field 300 mV μm−1 completely destroys the electron spin polarization due to an increase of the D’yakonov–Perel’ spin precession frequency of the hot electrons. This suggests that high field carrier transport conditions might not be suitable for spin-based technology with GaAs and LT-GaAs. It is also demonstrated that the presence of the excess arsenic sites in LT-GaAs might not affect the spin relaxation by Bir–Aronov–Pikus mechanism owing to a large number of electrons in n-doped materials.  相似文献   

15.
The effect of ytterbium (Yb3+) doping on the upconversion (UC) emission of praseodymium (Pr3+) doped in aluminum oxide based powders prepared by combustion synthesis is reported for near-infrared excitation (λ = 980 nm). Our experimental results show that the crystalline structure and the UC emission changes with the Yb3+ concentration. The sample containing only Pr3+ (1.0 wt.%) did not show any UC signal and the UC emission profiles of the samples containing Pr3+ (1.0 wt.%) and Yb3+ (0.5, 2.0 wt.%) are quite different. The sample containing 0.5 wt.% of Yb3+ has five emission lines in the visible range associated to Pr3+ 4f–4f transitions, 3P0 → 3H4 (497 nm), 3P0 → 3H5 (525 and 550 nm), 3P0 → 3H6 (620 nm) and 3P0 → 3F2 (650 nm). We believe that the UC process has its origin in energy transfer from Yb3+ ions to Pr3+ ions in Pr0.83Al11.83O19 phase. The sample containing 2.0 wt.% of Yb3+ has only one emission line in the visible range peaked at 507 nm which we believe has its origin in cooperative UC emission due to excited Yb3+ pairs in YbAlO3 phase. The samples containing Yb3+ also present UC emission lines in the near-infrared which are assigned to intrinsic lattice defects.  相似文献   

16.
The effect of various strain rates on the tensile behavior of a single crystal nickel-base superalloy was studied. Single crystals with 0 0 1 crystal orientation were tested at 800 and 1000 °C under three kinds of strain rate of 10−3, 10−4 and 6 × 10−5 s−1. The yield strength increased with the increase of strain rate, while the configuration of the stress–strain curves was independent of strain rate. Additionally, fracture surface was related to strain rate at two temperatures. At 800 °C the amount of cleavage surface was different at three strain rates, which resulted from the difference of activated slip systems. The elongation increased with the decrease of strain rate, which was influenced by the heterogeneous ductile deformation. At 1000 °C the difference of fracture surface was attributed to the microvoid at higher strain rate, while the γ/γ′ interfaces also played an important role at lower strain rate; elongation rate was independent of strain rate.  相似文献   

17.
In this preview we consider implications from the recent AGILE γ-ray detection of the BL Lac 0716+714 in September–October 2007, marked by two intense flaring episodes reaching peak fluxes of 200×10−8 photons cm−2 s−1 in the energy range 0.1–10 GeV. The source shows no evidence of emission lines or disk radiation, related to any surrounding gas; its pure non-thermal radiation is effectively represented in terms of the synchrotron-self Compton radiation in the Thomson regime, also supported by the observed quadratic relation of the γ-ray to the X-ray flux variations. With source parameters so derived, we find a total jet power of about 4×1045 erg s−1, that makes 0716+714 one of the brightest gas-poor BL Lacs so far detected at γ-ray energies. Thus it provides an ideal benchmark to compare its intrinsic luminosity with the top power extractable from a maximally rotating black-hole via the Blandford–Znajek mechanism. With a mass close to 5×108M for the associated BH, we find the source to remain close to the Blandford–Znajek threshold during the flare. Other gas-poor but weaker BL Lacs remain well below the threshold. These findings and those expected from FERMI will provide a powerful test of GR at work.  相似文献   

18.
Single-phase perovskite 0.65 PMN–0.35 PT was achieved at low temperature by a conventional mixed oxide method. It was prepared by ball-milling a mixture of PbO(orthorhombic), TiO2, Nb2O5 and (MgCO3)4Mg(OH)2·5H2O instead of MgO and heat treatment at 800 °C for 2 h. The formation was studied by means of DSC, FT-IR, Coupled TG-Mass, XRD, and SEM. It proceeded via formation of PbO(tetragonal) and Pb2Nb2O7(P2N) intermediates to form perovskite phase. The pure perovskite PMN-PT powder was obtained in particle size of 0.5–0.8 μm, agglomerate-free, and pseudo-cube. The powder calcined at 600 °C was sintered to 97% T.D. at 900–1000 °C for 2 h and showed room temperature dielectric constant of 3200, loss of 1–2%, and specific resistance of 5 × 1011 Ω cm.  相似文献   

19.
The transparent and conductive gallium-doped zinc oxide (GZO) film was deposited on 1737F Corning glass using the radio-frequency (RF) magnetron sputtering system with a GZO ceramic target. (The Ga2O3 contents are approximately 5 wt. %). In this study, the effect of the sputtering pressure on the structural, optical and electrical properties of GZO films upon the glass or polyester film (PET) substrate was investigated and discussed in detail. The GZO film was grown under a steady RF power of 400 W and a lower substrate temperature from room temperature up to 200 °C. The crystal structure and orientation of GZO thin films were examined by X-ray diffraction. All of the GZO films under various sputtering pressures had strong c-axis (002)-preferred orientation. Optical transparency was high (> 80%) over a wide spectral range from 380 nm to 900 nm. According to the experimental data, the resistivity of a single-layered GZO film was optimized at  8.3 × 10− 4 Ω cm and significantly influenced by the sputtering pressure. In further research, the sandwich structure of the GZO film/Au metal/GZO film was demonstrated to improve the electrical properties of the single-layered GZO film. The resistivity of the sandwich-structured GZO film was around 2.8 × 10− 4 Ω cm.  相似文献   

20.
Ultrafine alumina powder was prepared through resin formation between urea and formaldehyde. Aluminium stearate soap was introduced during resin preparation. Ethylene glycol was used to terminate the thermosetting reaction. Calcination of the product was carried out at 700, 1000, 1100, 1300 and 1400 °C to obtain aluminium oxide.IR and Raman spectroscopic analysis indicated the occupation of Al3+ at different sites in the polymer network (CO, NH2, CO, NH, and CH2OH).X-ray diffraction of powder calcined at 1000 °C revealed the presence of a mixture of α- and θ-alumina together, while a mixture of α- and β-alumina phases were obtained on calcination at 1400 °C. Transmission electron microscope (TEM) examination of the powder fired at 700 °C showed uniform grains in the form of clusters with average size between 22.02 and 30.5 nm. Clusters are multi-particles as evident from the electron diffraction pattern. Crystallite size of alumina powder calcined at 1000 °C was found to be ≈25.67 nm, while that of powder calcined at1400 °C was ≈30.52 nm. The calculated specific surface area of alumina powder calcined at 1000 °C was 59.17 m2 g−1, while that calcined at 1400 °C was 49.77 m2 g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号