首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Current construction technology increasingly seeks the sustainable usage of waste by-products as a resource material. This paper evaluates the viability of utilizing spent coffee grounds (CG), a highly organic beverage waste, to be stabilized as a road subgrade material. The additives used in this research incorporates industrial by-products such as fly ash (FA), ground granulated blast-furnace slag (S) as well as traditional binders such as portland cement (PC) and hydrated lime (L). CG collected from a coffee roaster were mixed with controlled additive content ratios by mass to assess the effects of these common engineering stabilizers towards the load-bearing capacity of CG. The additive contents of FA and S were 10, 20, 30, 40, and 50 % whereas the PC and L additive contents were 3 and 5 % by dry unit weight. Modified proctor compaction tests, 7-days unconfined compressive strength (UCS) tests, and California bearing ratio (CBR) tests were carried out to determine the optimum moisture content and bearing strength of the different mixes produced. It found that as the proportion of additives in the specimen increased, the optimum moisture content of the additive-stabilized CG specimens subsequently decreased. Regardless of the type of stabilizers used, the UCS strength increases were found to be nominal. FA and S mixes above the 20 % additive contents satisfied the requirements for subgrade materials; however, the low PC and L contents were insufficient to meet subgrade requirements. The research findings indicate that instead of being disposed of into landfills, stabilized CG has the potential to be used as a subgrade material. Such a sustainability driven approach for reuse of CG will have the potential to divert CG from landfills and at the same time utilize CG as a viable construction material.  相似文献   

2.
The rutting resistance of hot mix asphalt (HMA) Superpave? mixes in surface course materials was investigated using asphalt material characterisation tests and a digital imaging processing (DIP) technique. The effects of the type of aggregate, the type of binder and the binder content on rutting resistance were quantified. Two types of aggregate were examined: Superpave? SP12.5 and high friction SP12.5 FC2. Both a modified (PG Plus) and an unmodified binders were considered at the optimum binder content and the optimum content plus an additional 0.5%. To accurately identify the effect of each variable, the shear upheave of these mixes was also quantified. The DIP technique involved estimating the number of aggregate contacts, the total contact length and internal structure index of two-dimensional images of the experimentally tested samples. The results showed that both the rutting resistance and stiffness of HMA surface mixes were sensitive to aggregate type, binder type and binder content. A high friction aggregate provided a better internal structure characteristic, as well as superior rutting resistance and stiffness for HMA mixes. The use of PG Plus and the addition of 0.5% to the optimum binder content negatively affected HMA stiffness and rutting resistance. However, the levels of rutting resistance for all mixes were acceptable (rut depth < 12.5 mm), even when the shear upheave was considered. Internal structure indices measured by DIP were effective for capturing changes in the internal HMA structure with respect to aggregate type and asphalt cement content.  相似文献   

3.
Standard test specimens of ureaformaldehyde-based polymer concrete (PC) prepared with various amounts of ureaformaldehyde (UF) resin and cured at temperatures in the range 90 to 150 ° C for periods up to 21 d were tested in compression. The PC having a resin content of 8% and cured at 110 ° C for about 7 d, developed an ultimate compressive strength of 37 M Pa. The strength values of PC specimens are compared with those of Portland cement concrete (PCC) specimens prepared with different water/cement ratios and mix proportions. For certain mixes the compressive strength of PCC is surpassed by that of PC having a similar binder content and comparable workability.  相似文献   

4.
The chloride resistance of concrete mixtures produced with different binders and water-to-binder ratios is determined by three different methods (natural chloride diffusion, accelerated chloride migration and conductivity measurement). The influence of mix design and type of binder are evaluated and related to porosity. The effect of chloride binding on chloride resistance is assessed by thermodynamic modeling and compared with chloride content measured with acid and water extraction.Chloride resistance depends on the type of binder and on water-to-binder ratio. Chloride content measurements and thermodynamic modeling both show that chloride binding is strongly related to the hydration degree of the cement and of the mineral admixtures. However, the decisive parameter for chloride resistance in all the tests is the permeability while the influence of chloride binding is less important.  相似文献   

5.
This study investigates the influence of the curing time on the chloride penetration behavior of concrete produced with different concentrations of rice husk ash. Compressive strength and chloride penetration at 91 days were assessed according to ASTM C1202. Concentrations of 10%, 20% and 30% of rice husk ash were used and the results were compared with a reference mix with 100% Portland cement and with two other binary mixes with 35% fly ash and 50% ground blast furnace slag. Increases in rice husk ash content produced lower Coulomb charge values. Longer curing times reduced Coulomb charges values for all mixes investigated. However, the extent of the effect of curing times on compressive strength and chloride penetration in concrete is related to the type of mineral addition, the concentration of the substitutions used, the w/b ratio and the curing time used. This behavior points at an optimal curing period for each type of binder to meet specific technical and economical criteria, namely durability and compressive strength specifications for the structure.  相似文献   

6.
Warm mix asphalt (WMA) technology is still in its infancy, with significant scope for further exploration of the benefits of incorporation of higher percentages of recycled asphalt RA as well as modified binders for performance enhancement. The objective of this study was to evaluate three different WMA technologies, namely chemical and organic additives as well as foamed technology, within different mix compositions. The variables in mix composition included 10–20 % RA in surfacing mixes and 20–40 % RA in base layer mixes. The binder variables included two base binders, control mixes (no modifier) and ethylene vinyl acetate (EVA) or styrene butadiene styrene (SBS) with or without WMA technologies. A partial factorial experimental design based on the above variables was developed. Full-scale plant mixes and field (construction) mixes were produced and beams were prepared from compacted slabs and tested under 4 point loading to provide master curves and fatigue relations. Comparative results show inconsistent trends between different technologies. control mixes (HMA) can provide both higher and lower flexural stiffness than their WMA counterparts. EVA or SBS modification can provide either superior or inferior mixes to their WMA counterparts depending on the WMA technology. Generally the fatigue results of both the HMA surfacing and base layer mixes at both RA contents are superior to their equivalent WMA counterparts. The implications of these differences are explored in the publication.  相似文献   

7.
The present paper elucidates the influence of aggregate content of the mix on the reliability of rapid chloride permeability test (RCPT) results. For this purpose, test specimens prepared with mixes varying in total aggregate content were subjected to soaking test, RCPT and electrical resistivity measurements, and the results from these tests were compared and conclusions drawn. The RCPT results indicated the plain cement concrete to be relatively more resistant against chloride penetration than the plain cement mortar, whilst the opposite was true according to the 90-day soaking test results. The above trend did not change despite the addition of silica fume (SF) to the concrete and mortar mixes. The lower aggregate content or higher paste content of plain cement mortar and the mortar with SF is shown to mislead the RCPT results. The higher paste content in the above mix promotes the conduction of higher charge as a result of lower electrical resistivity. Thus the results derived from the present investigation emphasize the need to consider the volume fraction of aggregate in the mix with and without SF while interpreting the RCPT results. Furthermore, regardless of the total aggregate and SF content in the mix, the total charge passed (from the RCPT) through the mix decreased exponentially with increasing electrical resistivity. On the other hand, for those mixes containing either SF or a high volume fraction of aggregates the linear correlation between the total charge passed and chloride penetration coefficient (K) was poor. However, for the mix with relatively lower aggregate content and with no SF the charge passed was well correlated linearly with K.  相似文献   

8.
The interaction characteristics of cement asphalt composite mastic (CAM) and performance properties of cement asphalt emulsion mixtures (CAEM) were evaluated in this work using chemical and mechanical test methods to investigate the effect of the presence of cement on asphalt emulsion mixtures (AEM). The chemical composition of the CAM was obtained through use of X-ray diffraction, Fourier-transform infrared spectroscopy, and environmental scanning electron microscopy (ESEM) as a means to describe the interactions between the cement and asphalt in the composite materials. Test results demonstrated that cement can hydrate with the water phase of the asphalt emulsion. Asphalt droplets can simultaneously enclose cement particles and delay the hydration reaction process of cement. The interaction mechanism of cement particles or hydration products and residual asphalt is a physical compound process. The influence of these findings on asphalt emulsion mixture design and performance properties was assessed using varying mix design components and conducting laboratory-based mechanical test methods for rutting resistance and moisture susceptibility. Mix design components varied including added water content, emulsion content, and cement dosage levels. The optimum fluids content was determined based on the dry indirect tensile strength. It was found that the cement content significantly impacts the optimum fluids content for both added water and emulsion. Furthermore, the presence of cement improves the dry tensile strength, rutting resistance, and moisture susceptibility. Based on microstructural analysis of CAM and CAEM, the mechanism by which cement improves the performance of AEM is attributed to the ability of hydration products to increase both the stiffness of the asphalt binder and the adhesion at the mastic–aggregate interface. In practical applications, this study recommends a mix design method for cement-modified asphalt emulsion mixes (CAEM) based on selection of optimum cement and emulsion contents using indirect tensile strength and verification of the design through evaluation of the moisture susceptibility and rutting resistance of the CAEM mix. Threshold values of CAEM mix mechanical properties to determine the quality of the design are proposed.  相似文献   

9.
Factors affecting hazardous waste solidification/stabilization: a review   总被引:1,自引:0,他引:1  
Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.  相似文献   

10.
Wastepaper sludge ash (WSA) requires relatively higher proportions of water than Portland cement (PC) when used as a single binder. This high water demand may be reduced by the addition of secondary binders such as ground granulated blastfurnace slag (GGBS), which improves the hydration properties of the mixes. Based on the already determined physico-chemical properties of WSA a new method of paste preparation is introduced which also enhances the cementitious properties of WSA. The method utilises a wet-grinding stage prior to mixing. Pre-treatment of WSA prior to the addition of GGBS enhances effectively the strength development of the blended binder. Higher compressive strengths are obtained for the paste cube samples made using the new method of paste preparation than those achieved by conventional dry mixing methods.  相似文献   

11.
Recycling of highway materials is an effort to preserve the natural environment, reduce waste and provide a cost-effective way for construction of highways. The reclaimed asphalt pavement (RAP) contains stiffened binder caused by loss of volatile materials and oxidation. Hence, the addition of high amount of the RAP to asphalt mix may make it prone to fatigue failure. Due to this reason, addition of RAP to asphalt mixture in substantial amount has been a challenge so far. Therefore, ‘rejuvenators’ which are supposed to restore chemical and physical properties of the aged asphalts are used effectively in asphalt mixture. In this study, two locally available oils, i.e. pongamia oil (locally known as Karanja oil) derived from the seeds of Pongamia pinnata and a composite rejuvenator made of castor oil and coke oven gas condensate have been explored for rejuvenating the aged binder. The rheological properties of aged binder and rejuvenated binders were studied using a dynamic shear rheometer. From the various rheological tests conducted, it was found that certain proportion of pongamia oil as well as composite castor oil was able to impart desirable rutting as well as fatigue performance for the rejuvenated binder samples. The thermal analysis carried out using thermogravimetric analysis ensured adequate thermal stability for the binder specimens treated with these oils. In terms of binder performances, it was found that these oils could be considered as suitable rejuvenators for effectively restoring properties of the aged binder. Performance studies on RAP mixes may be extended for recommending these two oils as rejuvenators for hot mix pavement recycling.  相似文献   

12.
In this study, solidification/stabilization (S/S) of nickel hydroxide sludge using ordinary Portland cement (OPC) and oil palm ash (OPA) was carried out. The effects of increased substitution of OPA wt% in the S/S mix designs on the treated samples' physical and chemical characteristics were investigated. The physical characteristics studied were unconfined compressive strength (UCS) and changes in crystalline phases while chemical characteristics studied were leachability of nickel and leachate pH. Results indicated the optimum mix design for S/S of nickel hydroxide sludge using both OPC and OPA at B/S(d)=1 in terms of cost-effectiveness and treatment efficiency was 15 wt% OPA, 35 wt% OPC and 50 wt% sludge. The sufficient UCS and low leached nickel concentrations shown for this mix design indicate the viability of using OPA as substitute of OPC as it can significantly reduce cost normally incurred by usage of high amounts of OPC.  相似文献   

13.
The influence of palm oil fuel ash (POFA) inclusion on the compressive properties and chloride resistance of engineered cementitious composites (ECC) were experimentally investigated. In the material development, pozzolanic reactivity of POFA, direct tensile test and matrix fracture test were performed for evaluating the performance of ECC with POFA. Different ECC mixes with varying POFA content and water–binder ratios were used. The results show that the use of POFA should be helpful for achieving strain-hardening behavior by enhancing the fracture toughness and interfacial bond between matrix and PVA fiber. Moreover, at 28 and 90 days, increasing the POFA/cement ratio up to 0.2 led to an increase in the compressive strength of the ECC. The ECC mix with 1.2 POFA–cement ratio achieved a compressive strength of 30 MPa at 28 days, which is within the normal range of concrete strength for many applications. In addition, the test results show that mechanically pre-loaded POFA–ECC specimens exposed to chloride solution remain durable. The results also indicated strong evidence of self-healing of micro-cracked POFA–ECC specimens, which can still carry considerable flexural load. The rapid chloride permeability test reveal that the total charge passed was gradually reduced with the inclusion of higher amount of POFA. The results presented in this study provide a preliminary database for the durability of cracked and uncracked POFA–ECCs under chloride environment or/and combined mechanical loading.  相似文献   

14.
In this study, the effect of incorporation of silica fume in enhancing strength development rate and durability characteristics of binary concretes containing a low reactivity slag has been investigated. Binary concretes studied included mixes containing slag at cement replacement levels of 15%, 30% and 50% and mixes containing silica fume at cement replacement levels of 2.5%, 5%, 7.5% and 10%. Ternary concretes included combinations of silica fume and slag at various cement replacement levels. The w/b ratio and total cementitious materials content were kept constant for all mixes at 0.38 and 420 kg/m3 respectively. Concrete mixes were evaluated for compressive strength, electrical resistance, chloride permeability (ASTM C1202 RCPT test) and chloride migration (AASHTO TP64 RCMT test), at various ages up to 180 days.The results show that simultaneous use of silica fume has only a moderate effect in improving the slow rate of strength gain of binary mixes containing low reactivity slag. However it improves their durability considerably. Using appropriate combination of low reactivity slag and silica fume, it is possible to obtain ternary mixes with 28 day strength comparable to the control mix and improve durability particularly in the long term. Ternary mixes also have the added advantage of reduced water demand.  相似文献   

15.
The microstructural evolution of alkali-activated binders based on blast furnace slag, fly ash and their blends during the first six months of sealed curing is assessed. The nature of the main binding gels in these blends shows distinct characteristics with respect to binder composition. It is evident that the incorporation of fly ash as an additional source of alumina and silica, but not calcium, in activated slag binders affects the mechanism and rate of formation of the main binding gels. The rate of formation of the main binding gel phases depends strongly on fly ash content. Pastes based solely on silicate-activated slag show a structure dominated by a C–A–S–H type gel, while silicate-activated fly ash are dominated by N–A–S–H ‘geopolymer’ gel. Blended slag-fly ash binders can demonstrate the formation of co-existing C–A–S–H and geopolymer gels, which are clearly distinguishable at earlier age when the binder contains no more than 75 wt.% fly ash. The separation in chemistry between different regions of the gel becomes less distinct at longer age. With a slower overall reaction rate, a 1:1 slag:fly ash system shares more microstructural features with a slag-based binder than a fly ash-based binder, indicating the strong influence of calcium on the gel chemistry, particularly with regard to the bound water environments within the gel. However, in systems with similar or lower slag content, a hybrid type gel described as N–(C)–A–S–H is also identified, as part of the Ca released by slag dissolution is incorporated into the N–A–S–H type gel resulting from fly ash activation. Fly ash-based binders exhibit a slower reaction compared to activated-slag pastes, but extended times of curing promote the formation of more cross-linked binding products and a denser microstructure. This mechanism is slower for samples with lower slag content, emphasizing the correct selection of binder proportions in promoting a well-densified, durable solid microstructure.  相似文献   

16.
The paper presents experimental results on chloride ingress and water absorption of microsilica concrete. To investigate the interaction of cement, water and microsilica content on diffusion characteristics and porosity (water absorption), 36 concrete mixes with water/cement ratios ranging from 0·4 to 0·9 and cement contents between 250 and 450 kg/m3 were studied. The microsilica content varied between 5 and 15%. Curing was under two conditions, 20°C, 100% RH and 35°C, 25% RH.

The results show that a relationship exists between chloride concentration and W/C ratio, the relationship being different for the various microsilica contents. The effect of high W/C ratios is much more pronounced in low microsilica content mixes (0 and 5% addition). The chloride ingress is also sensitive to cement content in low microsilica contents mixes (0 and 5%), but not in high microsilica content mixes (10 and 15%).

The diffusion coefficient, Dc, is not significantly affected by microsilica content, for mixes made at a constant W/C ratio.  相似文献   


17.
High-performance concrete mixes containing various proportions of natural pozzolan and silica fume (up to 15% by weight of cement) were prepared and stored in sodium and magnesium sulfate solutions, in Dead Sea and Red Sea waters. The progressive deterioration and the relative sulfate resistance of these mixes were evaluated through visual observations, ultrasonic pulse velocity measurements, and relative strength determinations. The investigation indicated that the concrete mix containing 15% natural pozzolan, and 15% silica fume showed the best protection in sulfates solutions and sea waters. It retained more than 65% of its strength after one year of storage in sulfates solutions and sea waters. The superior resistance of that mix against sulfate attack is attributed to the pore refinement process and further densification of the transition zone occurring due to the conversion of lime forming from the hydration of cement into additional binding material through lime-pozzolan reaction. This investigation recommends the use of silica fume in combination with natural pozzolan for better performance in severe sulfate environments.  相似文献   

18.
This study assesses the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. rice husk ash (RHA), palm oil fuel ash (POFA) and river sand (RS) were ground to obtain two finenesses: one was the same size as the cement, and the other was smaller than the cement. Type I Portland cement was replaced by RHA, POFA and RS at 0%, 10%, 20%, 30% and 40% by weight of binder. A water to binder ratio (W/B) of 0.35 was used for all blended cement paste mixes. The percentages of amorphous materials and the compressive strength of the pastes due to the hydration reaction, filler effect and pozzolanic reaction were investigated. The results showed that ground rice husk ash and ground palm oil fuel ash were composed of amorphous silica material. The compressive strength of the pastes due to the hydration reaction decreased with decreasing cement content. The compressive strength of the pastes due to the filler effect increased with increasing cement replacement. The compressive strengths of the pastes due to the pozzolanic reaction were nonlinear and were fit with nonlinear isotherms that increased with increasing fineness of RHA and POFA, cement replacement rate and age of the paste. In addition, the model that was proposed to predict the percentage compressive strength of the blended cement pastes on the basis of the age of the paste and the percentage replacement with biomass ash was in good agreement with the experimental results. The optimum replacement level of rice husk ash and palm oil fuel ash in pastes was 30% by weight of binder; this replacement percentage resulted in good compressive strengths.  相似文献   

19.
The primary objective of this work is to characterize and compare the dynamic mechanical behavior of asphalt concrete mixes with styrene butadiene styrene (SBS) polymer and crumb rubber modified asphalt binders with the behavior of mixes with unmodified viscosity grade asphalt binders. Asphalt binders are characterized for their physical and rheological properties. Simple performance tests like dynamic modulus, dynamic and static creep tests are carried out at varying temperatures and time. Dynamic modulus master curves constructed using numerical optimization technique is used to explain the time and temperature dependency of modified and unmodified asphalt binder mixes. Creep parameters estimated through regression analysis explained the permanent deformation characteristics of asphalt concrete mixes. From the dynamic mechanical characterization studies, it is found that asphalt concrete mixes with SBS polymer modified asphalt binder showed significantly higher values of dynamic modulus and reduced rate of deformation at higher temperatures when compared to asphalt concrete mixes with crumb rubber and unmodified asphalt binders. From the concept of energy dissipation, it is found that SBS polymer modification substantially reduces the energy loss at higher temperatures. Multi-factorial analysis of variance carried out using generalized liner model showed that temperature, frequency and asphalt binder type significant influences the mechanical response of asphalt concrete mixes. The mechanical response of SBS polymer modified asphalt binders are significantly correlated with the rutting resistance of asphalt concrete mixes.  相似文献   

20.
The application of ground granulated blast furnace slag (GGBFS) and steel fibers in prestressed concrete railway sleepers was investigated in this study. The use of GGBFS was considered as an eco-friendly material aimed at reducing CO2 emissions and energy consumption as well as to enhance the durability performance of railway sleepers. Steel fibers improves the durability and structural performance in terms of crack control and reduction of spalling and can replace shear reinforcement. The mix proportions of the concrete incorporating GGBFS (56% GGBFS) and GGBFS with steel fibers (56% GGBFS and 0.75% steel fibers) were determined through a series laboratory tests and a life cycle assessment. These mixes satisfied the requirements of the Korean Railway Standard and resulted in improved flexural capacity as well as less CO2 emissions compared with current railway sleepers. Using these mixes, a total of ninety prestressed concrete sleepers were produced in a factory under the same manufacturing process as current railway sleepers, and their mechanical properties as well as durability performance were evaluated. The mix with partial replacement of Type III Portland cement by GGBFS showed an improved resistance to chloride ion penetration and freeze-thaw cycles compared with the concrete used for current railway sleepers. However, these mixes were more vulnerable to carbonation. The mix with GGBFS and steel fibers (mix BSF) showed a slightly better durability performance than the mix with GGBFS only (mix BS), including better carbonation and freeze-thaw resistances. The mix BSF showed decreased chloride ion penetration depth than mix BS but showed a slightly higher chloride ion diffusion coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号